Abstract

We propose single-shot multiwavelength digital holography with an extremely large incident angle and show the digital recording of multiple object waves at multiple wavelengths with an angle of more than 40 degrees and no beam combiner to generate interference light. Both the avoidance of the crosstalk between the object waves at different wavelengths and the space-bandwidth extension are simultaneously achieved with a single-shot exposure of a monochromatic image sensor and a reference beam even when the wavelength difference between the object waves is small. An extremely large angle can be set by utilizing the signal theory. An angle of up to 40.6 degrees was introduced, interference fringes with an 818 nm period at the wavelength of 532 nm were generated, and an image sensor recorded a two-wavelength-multiplexed hologram. Resolution improvement was experimentally demonstrated using two-wavelength digital holography with the wavelengths of 640 and 532 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA)

Tatsuki Tahara, Toru Kaku, and Yasuhiko Arai
Opt. Express 22(24) 29594-29610 (2014)

Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts

Tatsuki Tahara, Reo Otani, Kaito Omae, Takuya Gotohda, Yasuhiko Arai, and Yasuhiro Takaki
Opt. Express 25(10) 11157-11172 (2017)

Parallel phase-shifting color digital holography using two phase shifts

Takashi Kakue, Tatsuki Tahara, Kenichi Ito, Yuki Shimozato, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba
Appl. Opt. 48(34) H244-H250 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [Crossref]
  3. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  4. M. K. Kim, ed., Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).
  5. T.-C. Poon and J.-P. Liu, eds., Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).
  6. T. Noda, S. Kawata, and S. Minami, “Three-dimensional phase-contrast imaging by a computed-tomography microscope,” Appl. Opt. 31, 670–674 (1992).
    [Crossref]
  7. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
    [Crossref]
  8. E. Watanabe, T. Hoshiba, and B. Javidi, “High-precision microscopic phase imaging without phase unwrapping for cancer cell identification,” Opt. Lett. 38, 1319–1321 (2013).
    [Crossref]
  9. P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
    [Crossref]
  10. T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
    [Crossref]
  11. Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
    [Crossref]
  12. Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
    [Crossref]
  13. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
    [Crossref]
  14. R. Horisaki and T. Tahara, “Phase-shift binary digital holography,” Opt. Lett. 39, 6375–6378 (2014).
    [Crossref]
  15. W. Li, C. Shi, M. Piao, and N. Kim, “Multiple-3D-object secure information system based on phase shifting method and single interference,” Appl. Opt. 55, 4052–4059 (2016).
    [Crossref]
  16. A. W. Lohmann, “Reconstruction of vectorial wavefronts,” Appl. Opt. 4, 1667–1668 (1965).
    [Crossref]
  17. P. Picart, E. Moisson, and D. Mounier, “Twin-sensitivity measurement by spatial multiplexing of digitally recorded holograms,” Appl. Opt. 42, 1947–1957 (2003).
    [Crossref]
  18. N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
    [Crossref]
  19. R. Onodera and Y. Ishii, “Two-wavelength interferometry that uses a Fourier-transform method,” Appl. Opt. 37, 7988–7994 (1998).
    [Crossref]
  20. T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
    [Crossref]
  21. M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20, 18303–18312 (2012).
    [Crossref]
  22. J. E. Greivenkamp, “Sub-Nyquist interferometry,” Appl. Opt. 26, 5245–5258 (1987).
    [Crossref]
  23. A. Stern and B. Javidi, “Improved resolution digital holography using generalized sampling theorem,” J. Opt. Soc. Am. A 23, 1227–1235 (2006).
    [Crossref]
  24. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  25. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [Crossref]
  26. G. Nehmetallah and P. B. Banerjee, “Applicaitions of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
    [Crossref]

2016 (1)

2015 (2)

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

2014 (2)

2013 (1)

2012 (4)

M. Leclercq and P. Picart, “Digital Fresnel holography beyond the Shannon limits,” Opt. Express 20, 18303–18312 (2012).
[Crossref]

G. Nehmetallah and P. B. Banerjee, “Applicaitions of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
[Crossref]

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

2011 (1)

2007 (1)

2006 (1)

2003 (1)

2000 (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

1999 (1)

1998 (1)

1992 (1)

1987 (1)

1982 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1965 (1)

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Arai, Y.

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

T. Tahara, T. Kaku, and Y. Arai, “Digital holography based on multiwavelength spatial-bandwidth-extended capturing-technique using a reference arm (Multi-SPECTRA),” Opt. Express 22, 29594–29610 (2014).
[Crossref]

Awatsuji, Y.

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

Banerjee, P. B.

Charrière, F.

Clemente, P.

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Colomb, T.

Company, V. T.

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Cuche, E.

Dasari, R. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

Depeursinge, C.

Durán, V.

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Emery, Y.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Greivenkamp, J. E.

Hillman, T. R.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

Horisaki, R.

Hoshiba, T.

Ina, H.

Ishii, Y.

Javidi, B.

Kaku, T.

Kang, J. W.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

Kawai, H.

Kawata, S.

Kim, N.

Kobayashi, S.

Kühn, J.

Lancis, J.

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Leclercq, M.

Lee, B.

Lee, S.-Y.

Leith, E. N.

Li, W.

Lim, Y.

Lohmann, A. W.

Lue, N.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

Marquet, P.

Matoba, O.

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

Minami, S.

Moisson, E.

Montfort, F.

Mori, R.

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

Mounier, D.

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Nehmetallah, G.

Nitta, K.

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

Noda, T.

Ohzu, H.

Onodera, R.

Piao, M.

Picart, P.

Shi, C.

Stern, A.

Tahara, T.

Tajahuerce, E.

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Takaki, Y.

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).
[Crossref]

Takeda, M.

Upatnieks, J.

Watanabe, E.

Xia, P.

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

Xian, Q.

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

Yaqoob, Z.

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (7)

Appl. Phys. Lett. (2)

N. Lue, J. W. Kang, T. R. Hillman, R. R. Dasari, and Z. Yaqoob, “Single-shot quantitative dispersion phase microscopy,” Appl. Phys. Lett. 101, 084101 (2012).
[Crossref]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

J. Opt. (1)

T. Tahara, R. Mori, Y. Arai, and Y. Takaki, “Four-step phase-shifting digital holography simultaneously sensing dual-wavelength information using a monochromatic image sensor,” J. Opt. 17, 125707 (2015).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

Q. Xian, K. Nitta, O. Matoba, P. Xia, and Y. Awatsuji, “Phase and fluorescence imaging by combination of digital holographic microscopy and fluorescence microscopy,” Opt. Rev. 22, 349–353 (2015).
[Crossref]

Phys. Rev. A (1)

P. Clemente, V. Durán, E. Tajahuerce, V. T. Company, and J. Lancis, “Single-pixel digital ghost holography,” Phys. Rev. A 86, 041803 (2012).
[Crossref]

Other (2)

M. K. Kim, ed., Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, 2011).

T.-C. Poon and J.-P. Liu, eds., Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Optical system in reflection digital holography. Object and reference waves with multiple wavelengths illuminate a monochromatic image sensor without a beam combiner.
Fig. 2.
Fig. 2. Wavelength-multiplexed hologram and its spatial frequency distribution. Spatial frequency-division multiplexing of multiple wavelengths with a reference arm both (a) without aliasing and (b) with aliasing; (c)–(e) mean that the wavelength separation is well conducted as the angle θ increases; and (f) shows the recordable spatial bandwidth extension from (e).
Fig. 3.
Fig. 3. Photographs of the constructed optical setup. (a) Whole system and (b) magnification of the area inside the rectangle shown in (a).
Fig. 4.
Fig. 4. Spatial frequency distributions of recorded wavelength-multiplexed holograms with the angles of (a) 11.1 degrees, (b) 19.1 degrees, (c) 22.8 degrees, and (d) 38.2 degrees along to x -axis direction.
Fig. 5.
Fig. 5. Experimental results. Photographs of the object illuminated by lasers with the wavelengths of (a) 640 nm and (b) 532 nm. (c) Spatial frequency distribution of a recorded hologram and reconstructed images at (a) 640 nm and (b) 532 nm. (f) A color-synthesized image and magnified images in the rectangle areas in the case of z = 620    mm . (g) The color image synthesized from (d) and (e) and magnified images.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν x , y = sin θ x , y / λ ,
[ ν λ 2 ν λ 1 ] x , y = sin θ x , y ( λ 1 λ 2 ) λ 1 λ 2 .

Metrics