Abstract

In this study, we introduce what we believe is a novel holographic optical element called a chiral square Fresnel zone plate (CSFZP). The chirality is imposed on a square Fresnel zone plate (SFZP) using a nonclassical technique by rotating the half-period zones relative to one another. The rotation of the half-period zones, in turn, twists the side lobes of the diffraction pattern without altering the focusing properties inherent to a SFZP. As a consequence, the beam profile is hybrid, consisting of a strong central Gaussian focal spot with gradient force similar to that generated by a lens and twisted side lobes with orbital angular momentum. The optical fields at the focal plane were calculated and found to possess a whirlpool-phase profile and a twisted intensity profile. Analysis of the field variation along the direction of propagation revealed a spiraling phase and amplitude distribution. Poynting vector plot of the fields revealed the presence of angular momentum in the regions of chiral side lobes. The phase of the CSFZPs were displayed on a phase-only reflective spatial light modulator and illuminated using a laser. The intensity patterns recorded in the experiment match the calculated ones, with a strong central focal spot and twisted side lobes. The beam pattern was implemented in an optical trapping experiment and was found to possess particle trapping capabilities.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping

A. Vijayakumar and Shanti Bhattacharya
Appl. Opt. 51(25) 6038-6044 (2012)

Square array of optical vortices generated by multiregion spiral square zone plate

Arash Sabatyan, Seyyed Mojtaba Taheri Balanoji, and Seyyed Mortaza Taheri Balanoji
J. Opt. Soc. Am. A 33(9) 1793-1797 (2016)

Generation of dipole vortex array using spiral Dammann zone plates

Junjie Yu, Changhe Zhou, Wei Jia, Anduo Hu, Wugang Cao, Jun Wu, and Shaoqing Wang
Appl. Opt. 51(28) 6799-6804 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “The narrowing of Doppler broadened line in standing light wave,” Pis’ma Zh. Eksp. Teor. Fiz. 7, 348–351 (1968) [JETP Lett. 7, 272 (1968)].
  2. A. Ashkin, “Acceleration of trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  3. X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
    [Crossref]
  4. V. Arrizón, U. Ruiz, D. Sánchez-de-la-Llave, G. Mellado-Villaseñor, and A. S. Ostrovsky, “Optimum generation of annular vortices using phase diffractive optical elements,” Opt. Lett. 40, 1173–1176 (2015).
    [Crossref]
  5. I. Augustyniak, A. Popiołek-Masajada, J. Masajada, and S. Drobczyński, “New scanning technique for the optical vortex microscope,” Appl. Opt. 51, C117–C124 (2012).
    [Crossref]
  6. J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
    [Crossref]
  7. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B 15, 524–534 (1998).
    [Crossref]
  8. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  9. M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
    [Crossref]
  10. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
    [Crossref]
  11. W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
    [Crossref]
  12. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992).
    [Crossref]
  13. V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
    [Crossref]
  14. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [Crossref]
  15. A. Vijayakumar and S. Bhattacharya, “Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements,” Opt. Eng. 54, 111310 (2015).
    [Crossref]
  16. B. Zhang and D. Zhao, “Focusing properties of Fresnel zone plates with spiral phase,” Opt. Express 18, 12818–12823 (2010).
    [Crossref]
  17. A. Vijayakumar and S. Bhattacharya, “Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping,” Appl. Opt. 51, 6038–6044 (2012).
    [Crossref]
  18. A. Vijayakumar and S. Bhattacharya, “Design of multifunctional diffractive optical elements,” Opt. Eng. 54, 024104 (2015).
    [Crossref]
  19. P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transformation of a Bessel beam,” Opt. Lett. 40, 597–600 (2015).
    [Crossref]
  20. I. V. Minin and O. V. Minin, Basic Principles of Fresnel Antenna Arrays (Springer, 2008).
  21. L. J. Janicijevic, “Diffraction characteristics of square zone plates,” J. Opt. 13, 199–206 (1982).
    [Crossref]
  22. I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
    [Crossref]
  23. B. Zhang and D. Zhao, “Square Fresnel zone plate with spiral phase for generating zero axial irradiance,” Opt. Lett. 35, 1488–1490 (2010).
    [Crossref]
  24. I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA) (2005), pp. 177–185.
  25. I. V. Minin and O. V. Minin, “Array of Fresnel zone plate lens antennas: circular, hexagonal with chiral symmetry and hexagonal boundary,” in Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (2006), p. 270.
  26. N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
    [Crossref]
  27. A. Vijayakumar, M. Uemukai, and T. Suhara, “Phase-shifted Fresnel zone lenses for photomixing generation of coherent THz wave,” Jpn. J. Appl. Phys. 51, 070206 (2012).
    [Crossref]
  28. J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
    [Crossref]
  29. B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).
  30. N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).
  31. U. S. Kivshar and E. A. Ostrovskaya, “Optical vortices folding and twisting waves of light,” Opt. Photon. News 12(4), 24–28 (2001).
    [Crossref]
  32. V. Kumar and N. K. Viswanathan, “Topological structures in the Poynting vector field: an experimental realization,” Opt. Lett. 38, 3886–3889 (2013).
    [Crossref]
  33. A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
    [Crossref]
  34. A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
    [Crossref]
  35. M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
    [Crossref]
  36. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991).
    [Crossref]
  37. I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
    [Crossref]
  38. Ł. Płocinniczak, A. Popiołek-Masajada, J. Masajada, and M. Szatkowski, “Analytical model of the optical vortex microscope,” Appl. Opt. 55, B20–B27 (2016).
    [Crossref]

2016 (1)

2015 (6)

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Design of multifunctional diffractive optical elements,” Opt. Eng. 54, 024104 (2015).
[Crossref]

P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transformation of a Bessel beam,” Opt. Lett. 40, 597–600 (2015).
[Crossref]

V. Arrizón, U. Ruiz, D. Sánchez-de-la-Llave, G. Mellado-Villaseñor, and A. S. Ostrovsky, “Optimum generation of annular vortices using phase diffractive optical elements,” Opt. Lett. 40, 1173–1176 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements,” Opt. Eng. 54, 111310 (2015).
[Crossref]

2014 (1)

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

2010 (3)

2009 (1)

J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
[Crossref]

2007 (2)

I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
[Crossref]

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[Crossref]

2006 (2)

I. Golub, “Fresnel axicon,” Opt. Lett. 31, 1890–1892 (2006).
[Crossref]

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

2004 (2)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

2002 (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

2001 (1)

U. S. Kivshar and E. A. Ostrovskaya, “Optical vortices folding and twisting waves of light,” Opt. Photon. News 12(4), 24–28 (2001).
[Crossref]

1998 (1)

1992 (1)

1991 (1)

1989 (1)

1982 (1)

L. J. Janicijevic, “Diffraction characteristics of square zone plates,” J. Opt. 13, 199–206 (1982).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration of trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

1968 (1)

V. S. Letokhov, “The narrowing of Doppler broadened line in standing light wave,” Pis’ma Zh. Eksp. Teor. Fiz. 7, 348–351 (1968) [JETP Lett. 7, 272 (1968)].

Ahluwalia, B. S.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Alda, J.

J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
[Crossref]

Ananthamurthy, S.

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

Arlt, J.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

Arrizón, V.

Ashkin, A.

A. Ashkin, “Acceleration of trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Augustyniak, I.

Bacia, M.

M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
[Crossref]

Bekshaev, A. Y.

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[Crossref]

Beresna, M.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Bhattacharya, S.

A. Vijayakumar and S. Bhattacharya, “Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements,” Opt. Eng. 54, 111310 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Design of multifunctional diffractive optical elements,” Opt. Eng. 54, 024104 (2015).
[Crossref]

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping,” Appl. Opt. 51, 6038–6044 (2012).
[Crossref]

Bu, J.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Chan, C. T.

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[Crossref]

Chávez-Cerda, S.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

Cheong, W. C.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Cheong, W. G.

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

Danilov, E. G.

I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA) (2005), pp. 177–185.

Davidson, N.

Dholakia, K.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

Drevinskas, R.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

Drobczynski, S.

M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
[Crossref]

I. Augustyniak, A. Popiołek-Masajada, J. Masajada, and S. Drobczyński, “New scanning technique for the optical vortex microscope,” Appl. Opt. 51, C117–C124 (2012).
[Crossref]

Friberg, A. T.

Friesem, A. A.

Gahagan, K. T.

Gao, N.

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

Garcés-Chávez, V.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

García-Raffi, L. M.

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

Gecevicius, M.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Golub, I.

Hasman, E.

Heckenberg, N. R.

Iyengar, S. S.

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

Janicijevic, L. J.

L. J. Janicijevic, “Diffraction characteristics of square zone plates,” J. Opt. 13, 199–206 (1982).
[Crossref]

Jiménez, N.

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

Jin, C.

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

Kazansky, P. G.

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Kivshar, U. S.

U. S. Kivshar and E. A. Ostrovskaya, “Optical vortices folding and twisting waves of light,” Opt. Photon. News 12(4), 24–28 (2001).
[Crossref]

Kress, B. C.

B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).

Kumar, V.

Lamperska, W.

M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
[Crossref]

Lbov, G. S.

I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA) (2005), pp. 177–185.

Lee, W. M.

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “The narrowing of Doppler broadened line in standing light wave,” Pis’ma Zh. Eksp. Teor. Fiz. 7, 348–351 (1968) [JETP Lett. 7, 272 (1968)].

Li, C.

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

Lin, J.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Lin, Z.

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[Crossref]

Liu, M.

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

Marc, M.

M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
[Crossref]

Masajada, J.

McDuff, R.

McGloin, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Mellado-Villaseñor, G.

Melville, H.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Meyrueis, P.

B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).

Minin, I. V.

I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
[Crossref]

I. V. Minin and O. V. Minin, Basic Principles of Fresnel Antenna Arrays (Springer, 2008).

I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA) (2005), pp. 177–185.

I. V. Minin and O. V. Minin, “Array of Fresnel zone plate lens antennas: circular, hexagonal with chiral symmetry and hexagonal boundary,” in Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (2006), p. 270.

Minin, O. V.

I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
[Crossref]

I. V. Minin and O. V. Minin, Basic Principles of Fresnel Antenna Arrays (Springer, 2008).

I. V. Minin and O. V. Minin, “Array of Fresnel zone plate lens antennas: circular, hexagonal with chiral symmetry and hexagonal boundary,” in Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (2006), p. 270.

I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA) (2005), pp. 177–185.

Moh, K. J.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Ng, J.

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[Crossref]

Ostrovskaya, E. A.

U. S. Kivshar and E. A. Ostrovskaya, “Optical vortices folding and twisting waves of light,” Opt. Photon. News 12(4), 24–28 (2001).
[Crossref]

Ostrovsky, A. S.

Parthasarathi, P.

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

Petosa, A.

I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
[Crossref]

Picó, R.

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

Plocinniczak, L.

Popiolek-Masajada, A.

Rico-Garcia, J. M.

J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
[Crossref]

Romero-García, V.

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

Roskey, D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Ruiz, U.

Rusch, L.

Salgado-Remacha, F. J.

J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
[Crossref]

Sanchez-Brea, L. M.

J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
[Crossref]

Sánchez-de-la-Llave, D.

Sánchez-Morcillo, V.

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

Selvan, R.

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

Smith, C. P.

Soskin, M. S.

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[Crossref]

Staliunas, K.

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

Suhara, T.

A. Vijayakumar, M. Uemukai, and T. Suhara, “Phase-shifted Fresnel zone lenses for photomixing generation of coherent THz wave,” Jpn. J. Appl. Phys. 51, 070206 (2012).
[Crossref]

Summers, M. D.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Swartzlander, G. A.

Szatkowski, M.

Tao, S.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Thirakoune, S.

I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
[Crossref]

Turunen, J.

Uemukai, M.

A. Vijayakumar, M. Uemukai, and T. Suhara, “Phase-shifted Fresnel zone lenses for photomixing generation of coherent THz wave,” Jpn. J. Appl. Phys. 51, 070206 (2012).
[Crossref]

Vaity, P.

Vasara, A.

Vijayakumar, A.

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Design of multifunctional diffractive optical elements,” Opt. Eng. 54, 024104 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements,” Opt. Eng. 54, 111310 (2015).
[Crossref]

A. Vijayakumar, M. Uemukai, and T. Suhara, “Phase-shifted Fresnel zone lenses for photomixing generation of coherent THz wave,” Jpn. J. Appl. Phys. 51, 070206 (2012).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping,” Appl. Opt. 51, 6038–6044 (2012).
[Crossref]

Viswanathan, N. K.

Volke-Sepulveda, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

Wang, H.

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

White, A. G.

Wright, E. M.

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

Xie, C.

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

Yuan, X.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Yuan, X.-C.

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

Zhang, B.

Zhang, L.

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Zhang, L.-S.

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

Zhao, D.

Appl. Opt. (3)

Appl. Phys. Lett. (5)

V. Garcés-Chávez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003 (2004).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

M. Gecevičius, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Single beam optical vortex tweezers with tunable orbital angular momentum,” Appl. Phys. Lett. 104, 231110 (2014).
[Crossref]

N. Gao, C. Xie, C. Li, C. Jin, and M. Liu, “Square optical vortices generated by binary spiral zone plates,” Appl. Phys. Lett. 98, 151106 (2011).
[Crossref]

W. G. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Dholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85, 5784–5786 (2004).
[Crossref]

J. Opt. (1)

L. J. Janicijevic, “Diffraction characteristics of square zone plates,” J. Opt. 13, 199–206 (1982).
[Crossref]

J. Opt. B (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

A. Vijayakumar, M. Uemukai, and T. Suhara, “Phase-shifted Fresnel zone lenses for photomixing generation of coherent THz wave,” Jpn. J. Appl. Phys. 51, 070206 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

I. V. Minin, O. V. Minin, A. Petosa, and S. Thirakoune, “Improved zoning rule for designing square Fresnel zone plate lenses,” Microw. Opt. Technol. Lett. 49, 276–278 (2007).
[Crossref]

Opt. Appl. (1)

M. Bacia, W. Lamperska, J. Masajada, S. Drobczynski, and M. Marc, “Polygonal micro-whirlpools induced in ferrofluids,” Opt. Appl. 45, 309–316 (2015).
[Crossref]

Opt. Commun. (2)

A. Y. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332–348 (2007).
[Crossref]

J. Alda, J. M. Rico-Garcia, F. J. Salgado-Remacha, and L. M. Sanchez-Brea, “Diffractive performance of square Fresnel zone plates,” Opt. Commun. 282, 3402–3407 (2009).
[Crossref]

Opt. Eng. (2)

A. Vijayakumar and S. Bhattacharya, “Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements,” Opt. Eng. 54, 111310 (2015).
[Crossref]

A. Vijayakumar and S. Bhattacharya, “Design of multifunctional diffractive optical elements,” Opt. Eng. 54, 024104 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (7)

Opt. Photon. News (2)

U. S. Kivshar and E. A. Ostrovskaya, “Optical vortices folding and twisting waves of light,” Opt. Photon. News 12(4), 24–28 (2001).
[Crossref]

X. Yuan, B. S. Ahluwalia, W. C. Cheong, L. Zhang, J. Bu, S. Tao, K. J. Moh, and J. Lin, “Micro-optical elements for optical manipulation,” Opt. Photon. News 17(7), 36–41 (2006).
[Crossref]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration of trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

J. Ng, Z. Lin, and C. T. Chan, “Theory of optical trapping by an optical vortex beam,” Phys. Rev. Lett. 104, 103601 (2010).
[Crossref]

Pis’ma Zh. Eksp. Teor. Fiz. (1)

V. S. Letokhov, “The narrowing of Doppler broadened line in standing light wave,” Pis’ma Zh. Eksp. Teor. Fiz. 7, 348–351 (1968) [JETP Lett. 7, 272 (1968)].

Proc. SPIE (1)

A. Vijayakumar, P. Parthasarathi, S. S. Iyengar, R. Selvan, S. Ananthamurthy, S. Bhattacharya, and S. Bhattacharya, “Conical Fresnel zone lens for optical trapping,” Proc. SPIE 9654, 965426 (2015).
[Crossref]

Other (5)

I. V. Minin, O. V. Minin, E. G. Danilov, and G. S. Lbov, “Parameters optimization algorithm of a new type of diffraction optics elements,” in Proceedings of 5th IEEE-Russia Conference on Microwave Electronics: Measurement, Identification, Applications (MEMIA) (2005), pp. 177–185.

I. V. Minin and O. V. Minin, “Array of Fresnel zone plate lens antennas: circular, hexagonal with chiral symmetry and hexagonal boundary,” in Digest of the Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics (2006), p. 270.

B. C. Kress and P. Meyrueis, Applied Digital Optics (Wiley, 2009).

N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, “Formation of high-order acoustic Bessel beams by spiral diffraction gratings,” arXiv.org/abs/1604.08353 (2016).

I. V. Minin and O. V. Minin, Basic Principles of Fresnel Antenna Arrays (Springer, 2008).

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (4120 KB)      Variation of the intensity profile for K=4 degrees
» Visualization 2: MP4 (4988 KB)      Variation of the phase profile for K=4 degrees
» Visualization 3: MP4 (11174 KB)      Optical trapping

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Images of the CSFZPs designed for a focal length of 60 cm and a wavelength of 632.8 nm; their simulated intensity and phase profiles at the focal plane. The eight side lobes in the intensity profile and the four side lobes in the phase profile are shown for case K=4°.

Fig. 2.
Fig. 2.

Axial irradiance profiles of CSFZPs over a distance from 40–80 cm for (a) K=0°, (b) K=2°, (c) K=4°, (d) K=6°, and (e) K=8°. The variation of the intensity and phase profiles for K=4° is given in Visualization 1 and Visualization 2, respectively.

Fig. 3.
Fig. 3.

(a) Normalized plots of the axial intensity profile from 57 cm to 63 cm generated by the CSFZPs for K=0° (solid line), K=2° (o), K=4° (dashed line), K=6° (dotted line), and K=8° (dashed and dotted line) and (b) normalized intensity plots of the focal spot generated by the CSFZPs for K=0° (solid line), K=2° (o), K=4° (dashed line), K=6° (dotted line), and K=8° (dashed and dotted line).

Fig. 4.
Fig. 4.

Interference patterns simulated at the focal plane by superposition of a plane wave with the field diffracted from the CSFZP.

Fig. 5.
Fig. 5.

Poynting vector field plots for the beams generated by the CSFZP for (a) K=0° and (b) K=2°.

Fig. 6.
Fig. 6.

Experimental set up used for evaluating the far-field diffraction patterns of CSFZPs.

Fig. 7.
Fig. 7.

Experimental intensity patterns recorded at a distance of z=60  cm from the SLM for K=0°–8° in steps of 2°.

Fig. 8.
Fig. 8.

Schematic of the optical tweezer setup.

Fig. 9.
Fig. 9.

Optical trapping of Candida rugosa with the beam pattern generated by CSFZP for K=1° (Visualization 3).

Metrics