Abstract

An all-liquid optical zoom system based on two independently controllable liquid lenses positioned inside a single sealed cylindrical housing is demonstrated. This system yielded a zoom ratio of 1.5 for an object distance of 200 mm, an image distance 37 mm, and a corresponding resolution of better than 5 line pairs/mm. With a diameter of 5 mm, a packaged system length of 9.88 mm, and a power consumption of 3.5 mW, the system represents a new generation of ultra-miniaturized optofluidic systems with high functionality, excellent imaging properties, and highly flexible tunability, all with no mechanically moving parts.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electrically optofluidic zoom system with a large zoom range and high-resolution image

Lei Li, Rong-Ying Yuan, Jin-Hui Wang, and Qiong-Hua Wang
Opt. Express 25(19) 22280-22291 (2017)

Displaceable and focus-tunable electrowetting optofluidic lens

Lei Li, Jin-Hui Wang, Qiong-Hua Wang, and Shin-Tson Wu
Opt. Express 26(20) 25839-25848 (2018)

Hybrid driving variable-focus optofluidic lens

Jin-Hui Wang, Wei-Pu Tang, Lin-Yang Li, Liang Xiao, Xin Zhou, and Qiong-Hua Wang
Opt. Express 27(24) 35203-35215 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription