Abstract

We report fabrication and operation of multi-watt level waveguide lasers utilizing holmium-doped yttrium aluminum garnet (Ho:YAG). The waveguides were fabricated using ultrafast laser inscription, which relies on a chirped pulse ytterbium fiber laser to create depressed cladding structures inside the material. A variety of waveguides were created inside the Ho:YAG samples. We demonstrate output powers of 2  W from both a single-mode 50 μm waveguide laser and a multimode 80 μm waveguide laser. In addition, laser action from a co-doped Yb:Ho:YAG sample under in-band pumping conditions was demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide

Sean A. McDaniel, Adam Lancaster, Jonathan W. Evans, Ajoy K. Kar, and Gary Cook
Opt. Express 24(4) 3502-3512 (2016)

Efficient waveguide lasers in femtosecond laser inscribed double-cladding waveguides of Yb:YAG ceramics

Yuechen Jia, J. R. Vázquez de Aldana, and Feng Chen
Opt. Mater. Express 3(5) 645-650 (2013)

Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance

Hongliang Liu, Yuechen Jia, Javier Rodríguez Vázquez de Aldana, Daniel Jaque, and Feng Chen
Opt. Express 20(17) 18620-18629 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Trauner, N. Nishioka, and D. Patel, “Pulsed holmium: yttrium-aluminum-garnet (Ho:YAG) laser ablation of fibrocartilage and articular cartilage,” Am. J. Sports Med. 18, 316–320 (1990).
    [Crossref]
  2. I. Cernavin, “A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel,” Aust. Dent. J. 40, 79–84 (1995).
    [Crossref]
  3. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45, 3839–3845 (2006).
    [Crossref]
  4. H. Cankaya, M. N. Cizmeciyan, E. Beyatli, A. T. Gorgulu, A. Kurt, and A. Sennaroglu, “Injection-seeded, gain-switched tunable Cr:ZnSe laser,” Opt. Lett. 37, 136–138 (2012).
    [Crossref]
  5. P. Budni, L. Pomeranz, M. Lemons, C. Miller, J. Mosto, and E. Chicklis, “Efficient mid-infrared laser using 1.9-μm pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17, 723–728 (2000).
    [Crossref]
  6. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
    [Crossref]
  7. R. Remski and D. Smith, “Temperature dependence of pulsed laser threshold in YAG: Er3+, Tm3+, Ho+,” IEEE J. Quantum Electron. 6, 750–751 (1970).
    [Crossref]
  8. C. D. Nie, S. Bera, and J. A. Harrington, “Growth of single-crystal YAG fiber optics,” Opt. Express 24, 15522–15527 (2016).
    [Crossref]
  9. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
    [Crossref]
  10. H. P. J. Y. Allain and M. Monerie, “High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04  μm,” Electron. Lett. 27, 1513–1515 (1991).
    [Crossref]
  11. A. Guhur and S. D. Jackson, “Efficient holmium-doped fluoride fiber laser emitting 2.1 μm and blue upconversion fluorescence upon excitation at 2  μm,” Opt. Express 18, 20164–20169 (2010).
    [Crossref]
  12. K. Oh, T. F. Morse, P. M. Weber, A. Kilian, and L. Reinhart, “Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19, 278–280 (1994).
    [Crossref]
  13. N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38, 2431–2433 (2013).
    [Crossref]
  14. S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
    [Crossref]
  15. A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36, 3395–3397 (2011).
    [Crossref]
  16. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
    [Crossref]
  17. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
    [Crossref]
  18. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  19. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
    [Crossref]
  20. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30, 964–966 (2005).
    [Crossref]
  21. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
    [Crossref]
  22. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22, 3892–3894 (1983).
    [Crossref]
  23. M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
    [Crossref]
  24. T. Rothacher, W. Lüthy, and H. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
    [Crossref]
  25. R. W. Stites and T. R. Harris, “Spectroscopic investigation of Yb, Ho, Pr:YAG as a 3  μm laser source,” Proc. SPIE 9726, 97261O (2016).
    [Crossref]

2017 (1)

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

2016 (2)

C. D. Nie, S. Bera, and J. A. Harrington, “Growth of single-crystal YAG fiber optics,” Opt. Express 24, 15522–15527 (2016).
[Crossref]

R. W. Stites and T. R. Harris, “Spectroscopic investigation of Yb, Ho, Pr:YAG as a 3  μm laser source,” Proc. SPIE 9726, 97261O (2016).
[Crossref]

2013 (1)

2012 (2)

2011 (2)

2010 (2)

2006 (1)

2005 (2)

2002 (1)

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[Crossref]

2000 (1)

1999 (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

1998 (1)

T. Rothacher, W. Lüthy, and H. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[Crossref]

1996 (1)

1995 (1)

I. Cernavin, “A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel,” Aust. Dent. J. 40, 79–84 (1995).
[Crossref]

1994 (1)

1991 (1)

H. P. J. Y. Allain and M. Monerie, “High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04  μm,” Electron. Lett. 27, 1513–1515 (1991).
[Crossref]

1990 (1)

K. Trauner, N. Nishioka, and D. Patel, “Pulsed holmium: yttrium-aluminum-garnet (Ho:YAG) laser ablation of fibrocartilage and articular cartilage,” Am. J. Sports Med. 18, 316–320 (1990).
[Crossref]

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[Crossref]

1983 (1)

1970 (1)

R. Remski and D. Smith, “Temperature dependence of pulsed laser threshold in YAG: Er3+, Tm3+, Ho+,” IEEE J. Quantum Electron. 6, 750–751 (1970).
[Crossref]

Allain, H. P. J. Y.

H. P. J. Y. Allain and M. Monerie, “High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04  μm,” Electron. Lett. 27, 1513–1515 (1991).
[Crossref]

Ams, M.

Arai, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Arisholm, G.

Beecher, S.

Beecher, S. J.

Benayas, A.

Bera, S.

Berry, P. A.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

Beyatli, E.

Bookey, H. T.

Brown, G.

Budni, P.

Burghoff, J.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[Crossref]

Cankaya, H.

Cernavin, I.

I. Cernavin, “A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel,” Aust. Dent. J. 40, 79–84 (1995).
[Crossref]

Chen, F.

Chicklis, E.

Cizmeciyan, M. N.

Cook, G.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

Davis, K. M.

Dubinskii, M.

Ebendorff-Heidepriem, H.

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[Crossref]

Fromzel, V.

Fuerbach, A.

Gorgulu, A. T.

Gross, S.

Guhur, A.

Harrington, J. A.

Harris, T. R.

R. W. Stites and T. R. Harris, “Spectroscopic investigation of Yb, Ho, Pr:YAG as a 3  μm laser source,” Proc. SPIE 9726, 97261O (2016).
[Crossref]

Herman, P. R.

Hirao, K.

Hirth, A.

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[Crossref]

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[Crossref]

Ishihara, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Jackson, S. D.

Jaque, D.

Kar, A. K.

Khrushchev, I.

Kikuchi, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Kilian, A.

Kuan, K.

Kurt, A.

Lancaster, D. G.

Lemons, M.

Lippert, E.

Lüthy, W.

T. Rothacher, W. Lüthy, and H. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[Crossref]

Macdonald, J. R.

McDaniel, S. A.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

Meissner, H.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38, 2431–2433 (2013).
[Crossref]

Meissner, S.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

Miller, C.

Mitchell, J.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[Crossref]

Miura, K.

Monerie, M.

H. P. J. Y. Allain and M. Monerie, “High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04  μm,” Electron. Lett. 27, 1513–1515 (1991).
[Crossref]

Monro, T. M.

Morse, T. F.

Mosto, J.

Mu, X.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38, 2431–2433 (2013).
[Crossref]

Nejadmalayeri, A. H.

Nicolas, S.

Nie, C. D.

Nishioka, N.

K. Trauner, N. Nishioka, and D. Patel, “Pulsed holmium: yttrium-aluminum-garnet (Ho:YAG) laser ablation of fibrocartilage and articular cartilage,” Am. J. Sports Med. 18, 316–320 (1990).
[Crossref]

Nolte, S.

Oh, K.

Okamura, Y.

Okhrimchuk, A. G.

Patel, D.

K. Trauner, N. Nishioka, and D. Patel, “Pulsed holmium: yttrium-aluminum-garnet (Ho:YAG) laser ablation of fibrocartilage and articular cartilage,” Am. J. Sports Med. 18, 316–320 (1990).
[Crossref]

Pomeranz, L.

Psaila, N. D.

Reinhart, L.

Remski, R.

R. Remski and D. Smith, “Temperature dependence of pulsed laser threshold in YAG: Er3+, Tm3+, Ho+,” IEEE J. Quantum Electron. 6, 750–751 (1970).
[Crossref]

Ren, Y.

Rodenas, A.

Ródenas, A.

Rothacher, T.

T. Rothacher, W. Lüthy, and H. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[Crossref]

Rustad, G.

Sato, S.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Schellhorn, M.

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[Crossref]

Sekita, H.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Sennaroglu, A.

Shestakov, A. V.

Smith, D.

R. Remski and D. Smith, “Temperature dependence of pulsed laser threshold in YAG: Er3+, Tm3+, Ho+,” IEEE J. Quantum Electron. 6, 750–751 (1970).
[Crossref]

Stenersen, K.

Stites, R. W.

R. W. Stites and T. R. Harris, “Spectroscopic investigation of Yb, Ho, Pr:YAG as a 3  μm laser source,” Proc. SPIE 9726, 97261O (2016).
[Crossref]

Sugimoto, N.

Sumiyoshi, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

Tang, D. Y.

Ter-Gabrielyan, N.

Thomson, R. R.

Trauner, K.

K. Trauner, N. Nishioka, and D. Patel, “Pulsed holmium: yttrium-aluminum-garnet (Ho:YAG) laser ablation of fibrocartilage and articular cartilage,” Am. J. Sports Med. 18, 316–320 (1990).
[Crossref]

Tünnermann, A.

Weber, H.

T. Rothacher, W. Lüthy, and H. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[Crossref]

Weber, P. M.

Will, M.

Withford, M. J.

Yamamoto, S.

Yoshinaka, S.

Zelmon, D.

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

Zhang, J.

Am. J. Sports Med. (1)

K. Trauner, N. Nishioka, and D. Patel, “Pulsed holmium: yttrium-aluminum-garnet (Ho:YAG) laser ablation of fibrocartilage and articular cartilage,” Am. J. Sports Med. 18, 316–320 (1990).
[Crossref]

Appl. Opt. (2)

Aust. Dent. J. (1)

I. Cernavin, “A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel,” Aust. Dent. J. 40, 79–84 (1995).
[Crossref]

Electron. Lett. (1)

H. P. J. Y. Allain and M. Monerie, “High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04  μm,” Electron. Lett. 27, 1513–1515 (1991).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Schellhorn and A. Hirth, “Modeling of intracavity-pumped quasi-three-level lasers,” IEEE J. Quantum Electron. 38, 1455–1464 (2002).
[Crossref]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[Crossref]

R. Remski and D. Smith, “Temperature dependence of pulsed laser threshold in YAG: Er3+, Tm3+, Ho+,” IEEE J. Quantum Electron. 6, 750–751 (1970).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, and M. Kikuchi, “High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5, 936–943 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Rothacher, W. Lüthy, and H. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

S. A. McDaniel, P. A. Berry, G. Cook, D. Zelmon, S. Meissner, H. Meissner, and X. Mu, “CW and passively Q-switched operation of a Ho:YAG waveguide laser,” Opt. Laser Technol. 91, 1–6 (2017).
[Crossref]

Opt. Lett. (10)

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
[Crossref]

A. Rodenas, A. Benayas, J. R. Macdonald, J. Zhang, D. Y. Tang, D. Jaque, and A. K. Kar, “Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG,” Opt. Lett. 36, 3395–3397 (2011).
[Crossref]

H. Cankaya, M. N. Cizmeciyan, E. Beyatli, A. T. Gorgulu, A. Kurt, and A. Sennaroglu, “Injection-seeded, gain-switched tunable Cr:ZnSe laser,” Opt. Lett. 37, 136–138 (2012).
[Crossref]

Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett. 37, 3339–3341 (2012).
[Crossref]

N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, “Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency,” Opt. Lett. 38, 2431–2433 (2013).
[Crossref]

K. Oh, T. F. Morse, P. M. Weber, A. Kilian, and L. Reinhart, “Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19, 278–280 (1994).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30, 964–966 (2005).
[Crossref]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30, 2248–2250 (2005).
[Crossref]

Proc. SPIE (1)

R. W. Stites and T. R. Harris, “Spectroscopic investigation of Yb, Ho, Pr:YAG as a 3  μm laser source,” Proc. SPIE 9726, 97261O (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Waveguides inscribed in a 0.5 at. % Ho:YAG sample. The picture was taken looking into the direction of propagation of the waveguide.
Fig. 2.
Fig. 2. Cavity configuration used for testing of (A) the multimode waveguides and (B) the single-mode waveguides.
Fig. 3.
Fig. 3. Laser performance for various output coupler reflectivities for the 80 μm multimode Ho:YAG waveguide.
Fig. 4.
Fig. 4. Spectral output of the 80 μm waveguide dependent on output coupler reflectivity.
Fig. 5.
Fig. 5. Slope efficiency for the single-mode waveguides.
Fig. 6.
Fig. 6. Output spectra of the single-mode 50 μm waveguide as a function of outcoupling reflectivity.
Fig. 7.
Fig. 7. M 2 measurement for the multimode waveguide. The 1 / e 2 width was plotted as a function of distance when focused using a 10 cm focal length lens. Subset picture shows the far-field output mode profile in a 250    μm × 250    μm image.
Fig. 8.
Fig. 8. M 2 measurement for the single-mode waveguide. The 1 / e 2 width was plotted as a function of distance when focused using a 10 cm focal length lens. Subset picture shows the far-field output mode profile in a 80    μm × 80    μm image.
Fig. 9.
Fig. 9. Yb 3 + / Ho 3 + energy level diagram illustrating the pumping scheme of the co-doped material.
Fig. 10.
Fig. 10. Outward radial cracking of waveguides inscribed in the Yb:Ho:YAG sample.
Fig. 11.
Fig. 11. Output power for in-band pumping of the Yb:Ho:YAG waveguide.
Fig. 12.
Fig. 12. Cavity configuration used for 940 nm pumping of the Yb:Ho:YAG waveguide sample.

Tables (2)

Tables Icon

Table 1. Slope Efficiencies and Maximum Output Powers of Fig. 3

Tables Icon

Table 2. Slope Efficiencies and Output Powers of Fig. 5

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w ( z ) = w 0 · 1 + M 2 ( z z 0 z R ) 2 ,

Metrics