Abstract

We report on an interband cascade laser (ICL)-absorption spectrometer for absolute, calibration-free, atmospheric CO amount fraction measurements, addressing direct traceability of the results. The system combines first-principles direct tunable diode laser absorption spectroscopy (dTDLAS) with a metrological validation. Using a multipath cell with 76 m path length, our detection limit is 0.5 nmol/mol at Δt=14  s. The system is highly linear (slope: 0.999±0.008) in the amount fraction range of 0.1–1000 μmol/mol and thus is interesting for industrial as well as environmental applications. The sensor repeatability at 300 nmol/mol is 0.06 nmol/mol (with Δt=10  min). The sensor’s absolute response is in excellent agreement with the gravimetric values of a set of primary gas standards used to test the sensor accuracy. The relative expanded uncertainty (k=2) of the measured CO amount fraction is 2.8%. Due to this performance and the calibration-free approach, the spectrometer may be used as an optical transfer standard (OTS) if gas standards are for whatever reason not available or applicable, e.g., for airborne instruments. Our dTDLAS approach has shown excellent stability and accuracy in H2O detection [Appl. Phys. B 116, 883 (2014) [CrossRef]  ] even when compared to primary standards. We therefore deduce that the ICL spectrometer (after its adaptation to field conditions, similar to our H2O spectrometers) has good potential to meet the 2 nmol/mol compatibility goal stated by the World Meteorological Organization for atmospheric CO measurements, and serve as an OTS which does not need frequent calibrations using reference gases.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual interband cascade laser based trace-gas sensor for environmental monitoring

Gerard Wysocki, Yury Bakhirkin, Stephen So, Frank K. Tittel, Cory J. Hill, Rui Q. Yang, and Matthew P. Fraser
Appl. Opt. 46(33) 8202-8210 (2007)

Thermoelectrically cooled quantum-cascade-laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide

Anatoliy A. Kosterev, Frank K. Tittel, Rüdeger Köhler, Claire Gmachl, Federico Capasso, Deborah L. Sivco, Alfred Y. Cho, Shawn Wehe, and Mark G. Allen
Appl. Opt. 41(6) 1169-1173 (2002)

Development of a spectrometer using a continuous wave distributed feedback quantum cascade laser operating at room temperature for the simultaneous analysis of N2O and CH4 in the Earth's atmosphere

Lilian Joly, Claude Robert, Bertrand Parvitte, Valery Catoire, Georges Durry, Guy Richard, Bernard Nicoullaud, and Virginie Zéninari
Appl. Opt. 47(9) 1206-1214 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription