Abstract

The Q-switched Nd:YAG laser is focused on a palladium target in the control chamber filled with various hydrocarbon atmospheres (C1–C4) to investigate their effect on the palladium ablated mass, gas reaction products, and corresponding plasma parameters (such as electron density Ne and plasma temperature Te) during molecular decomposition. The plasma parameters arise mainly from the Pd nanocatalytic activity during the laser-induced plasma process. We compare synthetic air atmosphere to hydrocarbon media to understand how the latter generates excess heat via oxygen-free exothermic (recombination) reactions. Subsequently, this gives rise to more energetic plasma and higher temperature, regarding the large amount of nanoparticles released into the plasma. The dynamics of the decomposition/recombination events accompany the nanocatalyst activity, leading to soot deposition all over the chamber.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani
J. Opt. Soc. Am. B 32(4) 493-505 (2015)

Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble

Gabriele Cristoforetti, Marco Tiberi, Andrea Simonelli, Paolo Marsili, and Francesco Giammanco
Appl. Opt. 51(7) B30-B41 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Walker and R. A. Back, “Photochemistry in the photo‐ionization region. II. Photochemistry of methane, ethane, and ethylene at wavelengths below 900 Å,” J. Chem. Phys. 38, 1526–1535 (1963).
    [Crossref]
  2. E. M. Magee, “Photolysis of methane by vacuum‐ultraviolet light,” J. Chem. Phys. 39, 855–858 (1963).
    [Crossref]
  3. A. R. Derk, H. H. Funke, and J. L. Falconer, “Methane conversion to higher hydrocarbons by UV irradiation,” Ind. Eng. Chem. Res. 47, 6568–6572 (2008).
    [Crossref]
  4. M. E. Kress and A. G. G. M. Tielens, “Catalysis by dust grains in the solar nebula,” in From Stardust to Planetesimals: Contributed Papers (Moffett Field, 1996), pp. 149–154.
  5. D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution (Cambridge University, 2000).
  6. M. E. Kress and C. P. McKay, “Formation of methane in comet impacts: implications for Earth, Mars, and Titan,” Icarus 168, 475–483 (2004).
    [Crossref]
  7. B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
    [Crossref]
  8. S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects,” Spectrochim. Acta B 58, 1613–1623 (2003).
    [Crossref]
  9. X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta B 53, 731–739 (1998).
    [Crossref]
  10. R. Ellis, An Introduction to the Theory of Stellar Structure and Evolution, D. Prialnik, ed., 2nd ed., Contemporary Physics (2011), Vol. 52, p. 490.
  11. B. Sajad, P. Parvin, and M. A. Bassam, “SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system,” J. Phys. D 37, 3402–3408 (2004).
    [Crossref]
  12. M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
    [Crossref]
  13. C. Henry, P. Diwakar, and D. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390–1398 (2007).
    [Crossref]
  14. A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
    [Crossref]
  15. A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
    [Crossref]
  16. M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
    [Crossref]
  17. Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
    [Crossref]
  18. S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
    [Crossref]
  19. A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
    [Crossref]
  20. M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
    [Crossref]
  21. A. H. Laufer and J. R. McNesby, “Photolysis of Methane at 1236‐Å: quantum yield of hydrogen formation,” J. Chem. Phys. 49, 2272–2278 (1968).
    [Crossref]
  22. M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
    [Crossref]
  23. M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
    [Crossref]
  24. C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
    [Crossref]
  25. N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
    [Crossref]
  26. J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
    [Crossref]
  27. K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
    [Crossref]
  28. M. Dong, J. Lu, S. Yao, Z. Zhong, J. Li, J. Li, and W. Lu, “Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N,” Opt. Express 19, 17021–17029 (2011).
    [Crossref]
  29. M. Stafe, C. Negutu, N. N. Puscas, and I. Popescu, “Pulsed laser ablation of solids,” Rom. Rep. Phys.62 (2010).
  30. L. J. R. D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  31. O. Barthélemy, J. Margot, S. Laville, F. Vidal, M. Chaker, B. Le Drogoff, T. W. Johnston, and M. Sabsabi, “Investigation of the state of local thermodynamic equilibrium of a laser-produced aluminum plasma,” Appl. Spectrosc. 59, 529–536 (2005).
    [Crossref]
  32. F. Colao, V. Lazic, and R. Fantoni, “LIPS as an analytical technique in nonequilibrium plasma,” in Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures (International Society for Optics and Photonics, 2002), pp. 339–348.
  33. S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
    [Crossref]
  34. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
    [Crossref]
  35. S. Z. Shoursheini, B. Sajad, and P. Parvin, “Determination of gold fineness by laser induced breakdown spectroscopy with the simultaneous use of CW-CO2 and Q-SW Nd:YAG lasers,” Opt. Lasers Eng. 48, 89–95 (2010).
    [Crossref]
  36. H. R. Griem, Spectral Line Broadening by Plasma (Academic, 1974).
  37. S. D. Gallimore, “A study of plasma ignition enhancement for aeroramp injectors in supersonic combustion applications,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2001).

2017 (1)

A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
[Crossref]

2016 (2)

A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
[Crossref]

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

2015 (1)

2014 (3)

N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

2013 (1)

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

2012 (2)

A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
[Crossref]

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

2011 (2)

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

M. Dong, J. Lu, S. Yao, Z. Zhong, J. Li, J. Li, and W. Lu, “Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N,” Opt. Express 19, 17021–17029 (2011).
[Crossref]

2010 (2)

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

S. Z. Shoursheini, B. Sajad, and P. Parvin, “Determination of gold fineness by laser induced breakdown spectroscopy with the simultaneous use of CW-CO2 and Q-SW Nd:YAG lasers,” Opt. Lasers Eng. 48, 89–95 (2010).
[Crossref]

2009 (1)

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

2008 (1)

A. R. Derk, H. H. Funke, and J. L. Falconer, “Methane conversion to higher hydrocarbons by UV irradiation,” Ind. Eng. Chem. Res. 47, 6568–6572 (2008).
[Crossref]

2007 (1)

C. Henry, P. Diwakar, and D. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390–1398 (2007).
[Crossref]

2006 (1)

S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
[Crossref]

2005 (1)

2004 (3)

M. E. Kress and C. P. McKay, “Formation of methane in comet impacts: implications for Earth, Mars, and Titan,” Icarus 168, 475–483 (2004).
[Crossref]

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

B. Sajad, P. Parvin, and M. A. Bassam, “SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system,” J. Phys. D 37, 3402–3408 (2004).
[Crossref]

2003 (1)

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects,” Spectrochim. Acta B 58, 1613–1623 (2003).
[Crossref]

1998 (2)

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta B 53, 731–739 (1998).
[Crossref]

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

1977 (1)

K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
[Crossref]

1968 (1)

A. H. Laufer and J. R. McNesby, “Photolysis of Methane at 1236‐Å: quantum yield of hydrogen formation,” J. Chem. Phys. 49, 2272–2278 (1968).
[Crossref]

1963 (2)

D. C. Walker and R. A. Back, “Photochemistry in the photo‐ionization region. II. Photochemistry of methane, ethane, and ethylene at wavelengths below 900 Å,” J. Chem. Phys. 38, 1526–1535 (1963).
[Crossref]

E. M. Magee, “Photolysis of methane by vacuum‐ultraviolet light,” J. Chem. Phys. 39, 855–858 (1963).
[Crossref]

Abachi, S.

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Back, R. A.

D. C. Walker and R. A. Back, “Photochemistry in the photo‐ionization region. II. Photochemistry of methane, ethane, and ethylene at wavelengths below 900 Å,” J. Chem. Phys. 38, 1526–1535 (1963).
[Crossref]

Barthélemy, O.

Bassam, M. A.

B. Sajad, P. Parvin, and M. A. Bassam, “SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system,” J. Phys. D 37, 3402–3408 (2004).
[Crossref]

Baudelet, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Borisov, O. V.

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta B 53, 731–739 (1998).
[Crossref]

Boueri, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Boulmer-Leborgne, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

Bourgeois, S.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Carles, S.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Carvou, E.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Chaker, M.

Cheung, N. H.

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects,” Spectrochim. Acta B 58, 1613–1623 (2003).
[Crossref]

Colao, F.

F. Colao, V. Lazic, and R. Fantoni, “LIPS as an analytical technique in nonequilibrium plasma,” in Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures (International Society for Optics and Photonics, 2002), pp. 339–348.

Cremers, L. J. R. D. A.

L. J. R. D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cristoforetti, G.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

De Giacomo, A.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

de Lucas, M. C. M.

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Dell’Aglio, M.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

Derk, A. R.

A. R. Derk, H. H. Funke, and J. L. Falconer, “Methane conversion to higher hydrocarbons by UV irradiation,” Ind. Eng. Chem. Res. 47, 6568–6572 (2008).
[Crossref]

Ding, H.

N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
[Crossref]

Diwakar, P.

C. Henry, P. Diwakar, and D. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390–1398 (2007).
[Crossref]

Dong, M.

Ellis, R.

R. Ellis, An Introduction to the Theory of Stellar Structure and Evolution, D. Prialnik, ed., 2nd ed., Contemporary Physics (2011), Vol. 52, p. 490.

Falconer, J. L.

A. R. Derk, H. H. Funke, and J. L. Falconer, “Methane conversion to higher hydrocarbons by UV irradiation,” Ind. Eng. Chem. Res. 47, 6568–6572 (2008).
[Crossref]

Fantoni, R.

F. Colao, V. Lazic, and R. Fantoni, “LIPS as an analytical technique in nonequilibrium plasma,” in Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures (International Society for Optics and Photonics, 2002), pp. 339–348.

Farid, N.

N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
[Crossref]

Forslund, D.

K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
[Crossref]

Funke, H. H.

A. R. Derk, H. H. Funke, and J. L. Falconer, “Methane conversion to higher hydrocarbons by UV irradiation,” Ind. Eng. Chem. Res. 47, 6568–6572 (2008).
[Crossref]

Gallimore, S. D.

S. D. Gallimore, “A study of plasma ignition enhancement for aeroramp injectors in supersonic combustion applications,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2001).

Ghorbani, Z.

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

Girault, M.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Greif, R.

S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
[Crossref]

Griem, H. R.

H. R. Griem, Spectral Line Broadening by Plasma (Academic, 1974).

Hahn, D.

C. Henry, P. Diwakar, and D. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390–1398 (2007).
[Crossref]

Hallo, L.

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Harilal, S.

N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
[Crossref]

Hashemi, M.

A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Hassanein, A.

N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
[Crossref]

Hébert, D.

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Henry, C.

C. Henry, P. Diwakar, and D. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390–1398 (2007).
[Crossref]

Hermann, J.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

Hooshvar, M.

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

Johnston, T. W.

Jouvard, J. M.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Kiani, S.

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

Kindel, J.

K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
[Crossref]

Krása, J.

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

Kress, M. E.

M. E. Kress and C. P. McKay, “Formation of methane in comet impacts: implications for Earth, Mars, and Titan,” Icarus 168, 475–483 (2004).
[Crossref]

M. E. Kress and A. G. G. M. Tielens, “Catalysis by dust grains in the solar nebula,” in From Stardust to Planetesimals: Contributed Papers (Moffett Field, 1996), pp. 149–154.

Laufer, A. H.

A. H. Laufer and J. R. McNesby, “Photolysis of Methane at 1236‐Å: quantum yield of hydrogen formation,” J. Chem. Phys. 49, 2272–2278 (1968).
[Crossref]

Laville, S.

Lavisse, L.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Lazic, V.

F. Colao, V. Lazic, and R. Fantoni, “LIPS as an analytical technique in nonequilibrium plasma,” in Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures (International Society for Optics and Photonics, 2002), pp. 339–348.

Le Drogoff, B.

Le Garrec, J. L.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Lee, K.

K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
[Crossref]

Legnaioli, S.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

Li, J.

Lindman, E.

K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
[Crossref]

Lorusso, A.

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

Lu, J.

Lu, W.

Luches, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

Lui, S. L.

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects,” Spectrochim. Acta B 58, 1613–1623 (2003).
[Crossref]

Magee, E. M.

E. M. Magee, “Photolysis of methane by vacuum‐ultraviolet light,” J. Chem. Phys. 39, 855–858 (1963).
[Crossref]

Mahmoudi, Z.

A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
[Crossref]

Majdabadi, A.

A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Malekfar, R.

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

Maleki, M.

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

Mao, S. S.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Mao, X.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
[Crossref]

Mao, X. L.

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta B 53, 731–739 (1998).
[Crossref]

Marco de Lucas, M. C.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Margot, J.

McKay, C. P.

M. E. Kress and C. P. McKay, “Formation of methane in comet impacts: implications for Earth, Mars, and Titan,” Icarus 168, 475–483 (2004).
[Crossref]

McNesby, J. R.

A. H. Laufer and J. R. McNesby, “Photolysis of Methane at 1236‐Å: quantum yield of hydrogen formation,” J. Chem. Phys. 49, 2272–2278 (1968).
[Crossref]

Menneveux, J.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Mirershadi, S.

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

Mitchell, J. B. A.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Moosakhani, A.

A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
[Crossref]

A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
[Crossref]

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

Mortazavi, S. Z.

A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
[Crossref]

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
[Crossref]

Nassisi, V.

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

Negutu, C.

M. Stafe, C. Negutu, N. N. Puscas, and I. Popescu, “Pulsed laser ablation of solids,” Rom. Rep. Phys.62 (2010).

Omenetto, N.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

Ouf, F. X.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Palleschi, V.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

Parvin, P.

A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
[Crossref]

A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
[Crossref]

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
[Crossref]

S. Z. Shoursheini, B. Sajad, and P. Parvin, “Determination of gold fineness by laser induced breakdown spectroscopy with the simultaneous use of CW-CO2 and Q-SW Nd:YAG lasers,” Opt. Lasers Eng. 48, 89–95 (2010).
[Crossref]

B. Sajad, P. Parvin, and M. A. Bassam, “SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system,” J. Phys. D 37, 3402–3408 (2004).
[Crossref]

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

Perez, J.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Perrone, A.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

Pillon, G.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

Popescu, I.

M. Stafe, C. Negutu, N. N. Puscas, and I. Popescu, “Pulsed laser ablation of solids,” Rom. Rep. Phys.62 (2010).

Potin, V.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

Prialnik, D.

D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution (Cambridge University, 2000).

Puscas, N. N.

M. Stafe, C. Negutu, N. N. Puscas, and I. Popescu, “Pulsed laser ablation of solids,” Rom. Rep. Phys.62 (2010).

Reyhani, A.

A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
[Crossref]

M. Maleki, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, Z. Ghorbani, and S. Kiani, “Decomposition of ethane molecules at atmospheric pressure using metal assisted laser induced plasma,” J. Opt. Soc. Am. B 32, 493–505 (2015).
[Crossref]

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
[Crossref]

Russo, R.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Russo, R. E.

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta B 53, 731–739 (1998).
[Crossref]

Russo, R. F.

S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
[Crossref]

Sabsabi, M.

Sajad, B.

S. Z. Shoursheini, B. Sajad, and P. Parvin, “Determination of gold fineness by laser induced breakdown spectroscopy with the simultaneous use of CW-CO2 and Q-SW Nd:YAG lasers,” Opt. Lasers Eng. 48, 89–95 (2010).
[Crossref]

B. Sajad, P. Parvin, and M. A. Bassam, “SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system,” J. Phys. D 37, 3402–3408 (2004).
[Crossref]

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

Shoursheini, S. Z.

S. Z. Shoursheini, B. Sajad, and P. Parvin, “Determination of gold fineness by laser induced breakdown spectroscopy with the simultaneous use of CW-CO2 and Q-SW Nd:YAG lasers,” Opt. Lasers Eng. 48, 89–95 (2010).
[Crossref]

Silakhori, K.

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

Stafe, M.

M. Stafe, C. Negutu, N. N. Puscas, and I. Popescu, “Pulsed laser ablation of solids,” Rom. Rep. Phys.62 (2010).

Tielens, A. G. G. M.

M. E. Kress and A. G. G. M. Tielens, “Catalysis by dust grains in the solar nebula,” in From Stardust to Planetesimals: Contributed Papers (Moffett Field, 1996), pp. 149–154.

Tognoni, E.

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

Velardi, L.

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

Velyhan, A.

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

Vidal, F.

Vivien, C.

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

Walker, D. C.

D. C. Walker and R. A. Back, “Photochemistry in the photo‐ionization region. II. Photochemistry of methane, ethane, and ethylene at wavelengths below 900 Å,” J. Chem. Phys. 38, 1526–1535 (1963).
[Crossref]

Wen, S.-B.

S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
[Crossref]

Yao, S.

Yu, J.

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Zamanipour, Z.

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

Zhong, Z.

AIP Adv. (1)

M. Hashemi, P. Parvin, A. Moosakhani, S. Z. Mortazavi, A. Majdabadi, A. Reyhani, and S. Abachi, “Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS,” AIP Adv. 4, 067121 (2014).
[Crossref]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (3)

M. Girault, L. Hallo, L. Lavisse, M. C. M. de Lucas, D. Hébert, V. Potin, and J. M. Jouvard, “Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers,” Appl. Surf. Sci. 258, 9461–9465 (2012).
[Crossref]

M. Girault, J. L. Le Garrec, J. B. A. Mitchell, J. M. Jouvard, E. Carvou, J. Menneveux, J. Yu, F. X. Ouf, S. Carles, V. Potin, G. Pillon, S. Bourgeois, J. Perez, M. C. Marco de Lucas, and L. Lavisse, “Influence of the reactive atmosphere on the formation of nanoparticles in the plasma plume induced by nanosecond pulsed laser irradiation of metallic targets at atmospheric pressure and high repetition rate,” Appl. Surf. Sci. 374, 132–137 (2016).
[Crossref]

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Icarus (1)

M. E. Kress and C. P. McKay, “Formation of methane in comet impacts: implications for Earth, Mars, and Titan,” Icarus 168, 475–483 (2004).
[Crossref]

Ind. Eng. Chem. Res. (1)

A. R. Derk, H. H. Funke, and J. L. Falconer, “Methane conversion to higher hydrocarbons by UV irradiation,” Ind. Eng. Chem. Res. 47, 6568–6572 (2008).
[Crossref]

J. Appl. Phys. (2)

N. Farid, S. Harilal, H. Ding, and A. Hassanein, “Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures,” J. Appl. Phys. 115, 033107 (2014).
[Crossref]

S.-B. Wen, X. Mao, R. Greif, and R. F. Russo, “Radiative cooling of laser ablated vapor plumes: experimental and theoretical analyses,” J. Appl. Phys. 100, 053104 (2006).
[Crossref]

J. Chem. Phys. (3)

A. H. Laufer and J. R. McNesby, “Photolysis of Methane at 1236‐Å: quantum yield of hydrogen formation,” J. Chem. Phys. 49, 2272–2278 (1968).
[Crossref]

D. C. Walker and R. A. Back, “Photochemistry in the photo‐ionization region. II. Photochemistry of methane, ethane, and ethylene at wavelengths below 900 Å,” J. Chem. Phys. 38, 1526–1535 (1963).
[Crossref]

E. M. Magee, “Photolysis of methane by vacuum‐ultraviolet light,” J. Chem. Phys. 39, 855–858 (1963).
[Crossref]

J. Nucl. Sci. Technol. (1)

B. Sajad, P. Parvin, K. Silakhori, Z. Zamanipour, and M. Hooshvar, “Dissociation rate measurements for selectivity evaluation in SF6 selective dissociation by multiline vs. single line CO2 laser,” J. Nucl. Sci. Technol. 41, 771–776 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

Z. Ghorbani, P. Parvin, A. Reyhani, S. Z. Mortazavi, A. Moosakhani, M. Maleki, and S. Kiani, “Methane decomposition using metal-assisted nanosecond laser-induced plasma at atmospheric pressure,” J. Phys. Chem. C 118, 29822–29835 (2014).
[Crossref]

J. Phys. D (2)

B. Sajad, P. Parvin, and M. A. Bassam, “SF6 decomposition and layer formation due to excimer laser photoablation of SiO2 surface at gas-solid system,” J. Phys. D 37, 3402–3408 (2004).
[Crossref]

C. Vivien, J. Hermann, A. Perrone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D 31, 1263–1272 (1998).
[Crossref]

Laser Part. Beams (1)

J. Krása, A. Lorusso, V. Nassisi, L. Velardi, and A. Velyhan, “Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation,” Laser Part. Beams 29, 113–119 (2011).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

S. Z. Shoursheini, B. Sajad, and P. Parvin, “Determination of gold fineness by laser induced breakdown spectroscopy with the simultaneous use of CW-CO2 and Q-SW Nd:YAG lasers,” Opt. Lasers Eng. 48, 89–95 (2010).
[Crossref]

Phys. Fluids (1)

K. Lee, D. Forslund, J. Kindel, and E. Lindman, “Theoretical derivation of laser induced plasma profiles,” Phys. Fluids 20, 51–54 (1977).
[Crossref]

Phys. Plasmas (1)

A. Moosakhani, P. Parvin, A. Reyhani, and S. Z. Mortazavi, “Propane decomposition and conversion into other hydrocarbons using metal target assisted laser induced plasma,” Phys. Plasmas 24, 013505 (2017).
[Crossref]

Radiat. Meas. (1)

A. Moosakhani, P. Parvin, A. Majdabadi, and M. Hashemi, “Radon decay monitoring in air using characteristic emission of species in metal-assisted LIBS,” Radiat. Meas. 92, 39–48 (2016).
[Crossref]

RSC Adv. (1)

S. Z. Mortazavi, P. Parvin, A. Reyhani, R. Malekfar, and S. Mirershadi, “Hydrogen storage property of laser induced Pd-nanoparticle decorated multi-walled carbon nanotubes,” RSC Adv. 3, 1397–1409 (2013).
[Crossref]

Spectrochim. Acta B (5)

A. Reyhani, S. Z. Mortazavi, P. Parvin, and Z. Mahmoudi, “Simultaneous laser induced breakdown spectroscopy and Pd-assisted methane decomposition at different pressures,” Spectrochim. Acta B 74-75, 124–130 (2012).
[Crossref]

C. Henry, P. Diwakar, and D. Hahn, “Investigation of helium addition for laser-induced plasma spectroscopy of pure gas phase systems: analyte interactions and signal enhancement,” Spectrochim. Acta B 62, 1390–1398 (2007).
[Crossref]

S. L. Lui and N. H. Cheung, “Resonance-enhanced laser-induced plasma spectroscopy: ambient gas effects,” Spectrochim. Acta B 58, 1613–1623 (2003).
[Crossref]

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta B 53, 731–739 (1998).
[Crossref]

G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[Crossref]

Other (8)

F. Colao, V. Lazic, and R. Fantoni, “LIPS as an analytical technique in nonequilibrium plasma,” in Selected Research Papers on Spectroscopy of Nonequilibrium Plasma at Elevated Pressures (International Society for Optics and Photonics, 2002), pp. 339–348.

H. R. Griem, Spectral Line Broadening by Plasma (Academic, 1974).

S. D. Gallimore, “A study of plasma ignition enhancement for aeroramp injectors in supersonic combustion applications,” Ph.D. dissertation (Virginia Polytechnic Institute and State University, 2001).

M. Stafe, C. Negutu, N. N. Puscas, and I. Popescu, “Pulsed laser ablation of solids,” Rom. Rep. Phys.62 (2010).

L. J. R. D. A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

R. Ellis, An Introduction to the Theory of Stellar Structure and Evolution, D. Prialnik, ed., 2nd ed., Contemporary Physics (2011), Vol. 52, p. 490.

M. E. Kress and A. G. G. M. Tielens, “Catalysis by dust grains in the solar nebula,” in From Stardust to Planetesimals: Contributed Papers (Moffett Field, 1996), pp. 149–154.

D. Prialnik, An Introduction to the Theory of Stellar Structure and Evolution (Cambridge University, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the proposed process for the metal target ablation using laser-induced plasma in hydrocarbon environments. (a) Laser ablation during laser pulse duration, and (b) ablation due to the hydrodynamic forces of plasma expansion and energy release during exothermic reactions. The decomposition processes of the hydrocarbons are illustrated in four inset pictures below (a).

Fig. 2.
Fig. 2.

Timing events of hydrocarbon environment’s laser-induced plasma.

Fig. 3.
Fig. 3.

Experimental setup of the Pd-assisted laser-induced plasma technique for measuring ablation depth and ablative mass as well as the assessment of microplasma formation, i.e., the electron density and the plasma temperature in various hydrocarbon environments: methane, ethane, propane, and butane.

Fig. 4.
Fig. 4.

Characteristic optical emission spectra of (a) methane, (b) ethane, (c) propane [15], and (d) butane during the time-integrated spectroscopy of laser-induced plasma at the surface of the Pd target.

Fig. 5.
Fig. 5.

(a) Plasma temperature and (b) electron density of laser-induced plasma in vicinity of the palladium metal target in C1–C4 hydrocarbons and air environments.

Fig. 6.
Fig. 6.

(a) Ablation depth in air, methane, ethane, propane, and butane during laser-induced plasma ablation in the vicinity of the palladium target. Inset: bar chart of ablation depth and ablative mass for the gaseous environments of interest, and (b) the amount of deposited materials and palladium ablated mass during a typical 1000 laser shots; note that the plasma temperature is also replotted as per Fig. 5 for comparison.

Tables (2)

Tables Icon

Table 1. Some Properties of Hydrocarbons and Synthetic Air

Tables Icon

Table 2. Amount of Deposited Carbon and Palladium Ablative Mass During a Typical 1000 Laser Shots

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Excitation:CnHm+eCnHm(ν)+e,
lonization:CnHm+eCnHm++2e,
Dissociation:CnHm+eCn1Hm4+CH4+e,
By-Product:CnHmnCs+½mH2(Cs:Carbon Particle).
CnHm1+HCnHm,
Cn1Hm3+CH3CnHm,
CnHm1+CnHm1CnHm+CnHm2.
ln(IλgA)=1kTeE+ln(hcN04πZ),
τrel6.3×104Nef12g¯ΔE21(kT)1/2exp(ΔE21kT),
λ1.4×1012(kT)3/4ne(ΔEMAf12g¯)1/2exp(ΔE2kT),
Ne=1016(Δλs2W),
Ne=8.02×1012(Δλsα1/2)32,

Metrics