Abstract

X-ray luminescence computed tomography (XLCT) is a hybrid molecular imaging modality that combines the merits of both x-ray imaging (high resolution) and optical imaging (high sensitivity). In this study, we have evaluated the sensitivity of XLCT with phantom experiments by scanning targets of different phosphor concentrations at different depths. We found that XLCT is capable of imaging targets of very low concentrations (27.6 μM or 0.01 mg/mL) at significant depths, such as 21 mm. Our results demonstrate that there is little variation in the reconstructed target size with a maximum target size error of 4.35% for different imaging depths for XLCT. We have, we believe for the first time, compared the sensitivity of XLCT with that of traditional computed tomography (CT) for phosphor targets. We found that XLCT’s use of x-ray-induced photons provides much higher measurement sensitivity and contrast compared to CT, which provides image contrast solely based on x-ray attenuation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
X-ray luminescence optical tomography imaging: experimental studies

Changqing Li, Kun Di, Julien Bec, and Simon R. Cherry
Opt. Lett. 38(13) 2339-2341 (2013)

Effects of background fluorescence in fluorescence molecular tomography

Melisa Gao, George Lewis, Gordon M. Turner, Antoine Soubret, and Vasilis Ntziachristos
Appl. Opt. 44(26) 5468-5474 (2005)

Tomographic molecular imaging of x-ray-excitable nanoparticles

Guillem Pratx, Colin M. Carpenter, Conroy Sun, Ravi P. Rao, and Lei Xing
Opt. Lett. 35(20) 3345-3347 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription