J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).

[Crossref]

S. J. Feng, Q. Chen, C. Zuo, T. Y. Tao, Y. Hu, and A. Asundi, “Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns,” Opt. Express 25, 540–559 (2017).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high speed three-dimensional shape measurement,” Opt. Eng. 55, 024105 (2016).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

J. P. Zhu, P. Zhou, X. Y. Su, and Z. S. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).

[Crossref]

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54, 054108 (2015).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541–10551 (2015).

[Crossref]

M. Liu, S. B. Yin, S. R. Yang, and Z. H. Zhang, “An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection,” Proc. SPIE 9677, 96771D (2015).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Laser Eng. 51, 790–795 (2013).

[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38, 540–542 (2013).

[Crossref]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50, 917–921 (2012).

[Crossref]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636 (2012).

[Crossref]

C. Zuo, Q. Chen, and S. Feng, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51, 4477–4490 (2012).

[Crossref]

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).

[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).

[Crossref]

P. Wissmann, F. Forster, and R. Schmitt, “Fast and low-cost structured light pattern sequence projection,” Opt. Express 19, 24657–24671 (2011).

[Crossref]

G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, C. D. Perciante, and J. A. Ferrari, “Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms,” Appl. Opt. 50, 147–154 (2011).

[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).

[Crossref]

G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).

[Crossref]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).

[Crossref]

X. Y. Su, W. Song, Y. Cao, and L. Q. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708–712 (2004).

[Crossref]

S. J. Feng, Q. Chen, C. Zuo, T. Y. Tao, Y. Hu, and A. Asundi, “Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns,” Opt. Express 25, 540–559 (2017).

[Crossref]

L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).

[Crossref]

G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, C. D. Perciante, and J. A. Ferrari, “Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms,” Appl. Opt. 50, 147–154 (2011).

[Crossref]

G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).

[Crossref]

X. Y. Su, W. Song, Y. Cao, and L. Q. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708–712 (2004).

[Crossref]

S. J. Feng, Q. Chen, C. Zuo, T. Y. Tao, Y. Hu, and A. Asundi, “Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns,” Opt. Express 25, 540–559 (2017).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

C. Zuo, Q. Chen, and S. Feng, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51, 4477–4490 (2012).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

S. J. Feng, Q. Chen, C. Zuo, T. Y. Tao, Y. Hu, and A. Asundi, “Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns,” Opt. Express 25, 540–559 (2017).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, C. D. Perciante, and J. A. Ferrari, “Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms,” Appl. Opt. 50, 147–154 (2011).

[Crossref]

G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).

[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high speed three-dimensional shape measurement,” Opt. Eng. 55, 024105 (2016).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541–10551 (2015).

[Crossref]

J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high speed three-dimensional shape measurement,” Opt. Eng. 55, 024105 (2016).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541–10551 (2015).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

M. Liu, S. B. Yin, S. R. Yang, and Z. H. Zhang, “An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection,” Proc. SPIE 9677, 96771D (2015).

[Crossref]

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54, 054108 (2015).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38, 540–542 (2013).

[Crossref]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50, 917–921 (2012).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high speed three-dimensional shape measurement,” Opt. Eng. 55, 024105 (2016).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541–10551 (2015).

[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

X. Y. Su, W. Song, Y. Cao, and L. Q. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708–712 (2004).

[Crossref]

J. P. Zhu, P. Zhou, X. Y. Su, and Z. S. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).

[Crossref]

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54, 054108 (2015).

[Crossref]

X. Y. Su, W. Song, Y. Cao, and L. Q. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708–712 (2004).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high speed three-dimensional shape measurement,” Opt. Eng. 55, 024105 (2016).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541–10551 (2015).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

X. Y. Su, W. Song, Y. Cao, and L. Q. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708–712 (2004).

[Crossref]

M. Liu, S. B. Yin, S. R. Yang, and Z. H. Zhang, “An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection,” Proc. SPIE 9677, 96771D (2015).

[Crossref]

M. Liu, S. B. Yin, S. R. Yang, and Z. H. Zhang, “An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection,” Proc. SPIE 9677, 96771D (2015).

[Crossref]

J. P. Zhu, P. Zhou, X. Y. Su, and Z. S. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).

[Crossref]

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54, 054108 (2015).

[Crossref]

J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Laser Eng. 51, 790–795 (2013).

[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38, 540–542 (2013).

[Crossref]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50, 917–921 (2012).

[Crossref]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636 (2012).

[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).

[Crossref]

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).

[Crossref]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).

[Crossref]

M. Liu, S. B. Yin, S. R. Yang, and Z. H. Zhang, “An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection,” Proc. SPIE 9677, 96771D (2015).

[Crossref]

J. P. Zhu, P. Zhou, X. Y. Su, and Z. S. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).

[Crossref]

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54, 054108 (2015).

[Crossref]

S. J. Feng, Q. Chen, C. Zuo, T. Y. Tao, Y. Hu, and A. Asundi, “Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns,” Opt. Express 25, 540–559 (2017).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

C. Zuo, Q. Chen, and S. Feng, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51, 4477–4490 (2012).

[Crossref]

G. A. Ayubi, J. M. Di Martino, J. R. Alonso, A. Fernández, C. D. Perciante, and J. A. Ferrari, “Three-dimensional profiling with binary fringes using phase-shifting interferometry algorithms,” Appl. Opt. 50, 147–154 (2011).

[Crossref]

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).

[Crossref]

L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).

[Crossref]

C. Zuo, Q. Chen, and S. Feng, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51, 4477–4490 (2012).

[Crossref]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51, 6631–6636 (2012).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement,” Appl. Opt. 54, 10541–10551 (2015).

[Crossref]

S. Heist, P. Kühmstedt, A. Tünnermann, and G. Notni, “Experimental comparison of aperiodic sinusoidal fringes and phase-shifted sinusoidal fringes for high speed three-dimensional shape measurement,” Opt. Eng. 55, 024105 (2016).

[Crossref]

J. P. Zhu, X. Y. Su, Z. S. You, and Y. K. Liu, “Temporal-spatial encoding binary fringes toward three-dimensional shape measurement without projector nonlinearity,” Opt. Eng. 54, 054108 (2015).

[Crossref]

X. Y. Su, W. Song, Y. Cao, and L. Q. Xiang, “Phase-height mapping and coordinate calibration simultaneously in phase-measuring profilometry,” Opt. Eng. 43, 708–712 (2004).

[Crossref]

P. Wissmann, F. Forster, and R. Schmitt, “Fast and low-cost structured light pattern sequence projection,” Opt. Express 19, 24657–24671 (2011).

[Crossref]

J. P. Zhu, P. Zhou, X. Y. Su, and Z. S. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24, 28549–28560 (2016).

[Crossref]

S. J. Feng, Q. Chen, C. Zuo, T. Y. Tao, Y. Hu, and A. Asundi, “Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns,” Opt. Express 25, 540–559 (2017).

[Crossref]

J. Dai and S. Zhang, “Phase-optimized dithering technique for high-quality 3D shape measurement,” Opt. Laser Eng. 51, 790–795 (2013).

[Crossref]

J. S. Hyun and S. Zhang, “Superfast 3D absolute shape measurement using five binary patterns,” Opt. Lasers Eng. 90, 217–224 (2017).

[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).

[Crossref]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).

[Crossref]

B. W. Li, Y. J. Wang, J. F. Dai, W. Lohry, and S. Zhang, “Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques,” Opt. Lasers Eng. 54, 236–246 (2014).

[Crossref]

C. Zuo, Q. Chen, G. H. Gu, S. J. Feng, F. X. Feng, R. B. Li, and G. C. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse width modulation fringe projection,” Opt. Lasers Eng. 51, 953–960 (2013).

[Crossref]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50, 917–921 (2012).

[Crossref]

L. Ekstrand and S. Zhang, “Three-dimensional profilometry with nearly focused binary phase-shifting algorithms,” Opt. Lett. 36, 4518–4520 (2011).

[Crossref]

W. Lohry and S. Zhang, “Genetic method to optimize binary dithering technique for high-quality fringe generation,” Opt. Lett. 38, 540–542 (2013).

[Crossref]

G. A. Ayubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, “Pulse-width modulation in defocused 3D fringe projection,” Opt. Lett. 35, 3682–3684 (2010).

[Crossref]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).

[Crossref]

M. Liu, S. B. Yin, S. R. Yang, and Z. H. Zhang, “An accurate projector gamma correction method for phase-measuring profilometry based on direct optical power detection,” Proc. SPIE 9677, 96771D (2015).

[Crossref]