Abstract

An Nd:YAG-MOPA system consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages has been designed and built as a technology demonstrator for future lidar applications. Overall, the authors demonstrate that it generates more than 500 mJ of pulse energy at a 1064 nm wavelength and 100 Hz pulse repetition frequency at about 30 ns pulse duration in the single longitudinal mode. Seeded with 75 mJ pulses, the second amplifier stage achieved an optical efficiency (extracted energy to pump energy) of more than 23% while preserving excellent beam quality. To address the 500 mJ regime while retaining the basic system properties, an established Innoslab design was scaled geometrically.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly stable, 54mJ Yb-InnoSlab laser platform at 0.5kW average power

Bruno E. Schmidt, Arvid Hage, Torsten Mans, François Légaré, and Hans Jakob Wörner
Opt. Express 25(15) 17549-17555 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
    [Crossref]
  2. P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
    [Crossref]
  3. J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
    [Crossref]
  4. J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
    [Crossref]
  5. J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
    [Crossref]
  6. M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.
  7. S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.
  8. S. Hahn, M. Bode, J. Luttmann, and H.-D. Hoffmann, “FULAS: High energy laser source for future LIDAR applications,” in Proceeding of ICSO—International Conference on Space Optics, Biarriz, France, 18 Oct., 2016.
  9. M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.
  10. C. Stephan, G. Ehret, B. Millet, and P. Flamant, “Methane monitoring from space—an overview of the MERLIN instrument,” in Proceeding of ICSO—International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 Oct., 2012.
  11. K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
    [Crossref]
  12. V. Evtuhov and A. E. Siegman, “A “twisted-mode” technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt. 4, 142–143 (1965).
    [Crossref]
  13. M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
    [Crossref]
  14. P. Loosen and A. Knitsch, “Incoherent beam superposition,” in High Power Diode Lasers and Applications, F. Bachmann, P. Loosen, and R. Poprawe, eds., 1st ed. (Springer, 2010), pp. 139–142.
  15. R. Kallenbach, E. Murphy, B. Gramkow, M. Rech, K. Weidlich, T. Leikert, R. Henkelmann, B. Trefzger, B. Metz, H. Michaelis, K. Lingenauber, S. DelTogno, T. Behnke, N. Thomas, D. Piazza, and K. Seiferlin, “Space-qualified laser system for the BepiColombo Laser Altimeter,” Appl. Opt. 52, 8732–8746 (2013).
    [Crossref]
  16. F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
    [Crossref]
  17. F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
    [Crossref]

2017 (1)

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

2015 (1)

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

2014 (2)

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

2013 (1)

2011 (1)

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

2008 (1)

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

2007 (1)

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

2006 (2)

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

1965 (1)

Alpers, M.

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.

Amediek, A.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Behnke, T.

Bode, M.

S. Hahn, M. Bode, J. Luttmann, and H.-D. Hoffmann, “FULAS: High energy laser source for future LIDAR applications,” in Proceeding of ICSO—International Conference on Space Optics, Biarriz, France, 18 Oct., 2016.

M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.

Büdenbender, C.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Chinal, E.

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

DelTogno, S.

Durand, Y.

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

Ehret, G.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

C. Stephan, G. Ehret, B. Millet, and P. Flamant, “Methane monitoring from space—an overview of the MERLIN instrument,” in Proceeding of ICSO—International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 Oct., 2012.

Elsen, F.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

Endemann, M.

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

Esser, D.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

Evtuhov, V.

Fix, A.

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Flamant, P.

M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.

C. Stephan, G. Ehret, B. Millet, and P. Flamant, “Methane monitoring from space—an overview of the MERLIN instrument,” in Proceeding of ICSO—International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 Oct., 2012.

Fu, S.

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

Gramkow, B.

Hahn, S.

S. Hahn, M. Bode, J. Luttmann, and H.-D. Hoffmann, “FULAS: High energy laser source for future LIDAR applications,” in Proceeding of ICSO—International Conference on Space Optics, Biarriz, France, 18 Oct., 2016.

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

Heinzig, M.

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

Henkelmann, R.

Hoefer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Höfer, M.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

Hoffmann, D.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Hoffmann, H.-D.

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

S. Hahn, M. Bode, J. Luttmann, and H.-D. Hoffmann, “FULAS: High energy laser source for future LIDAR applications,” in Proceeding of ICSO—International Conference on Space Optics, Biarriz, France, 18 Oct., 2016.

Höffner, J.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Jungbluth, B.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

Kallenbach, R.

Kasemann, R.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

Kiemle, C.

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Klein, J.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

Knitsch, A.

P. Loosen and A. Knitsch, “Incoherent beam superposition,” in High Power Diode Lasers and Applications, F. Bachmann, P. Loosen, and R. Poprawe, eds., 1st ed. (Springer, 2010), pp. 139–142.

Leikert, T.

Lemmerz, C.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Lingenauber, K.

Livrozet, M.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

Löhring, J.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Loosen, P.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

P. Loosen and A. Knitsch, “Incoherent beam superposition,” in High Power Diode Lasers and Applications, F. Bachmann, P. Loosen, and R. Poprawe, eds., 1st ed. (Springer, 2010), pp. 139–142.

Luttmann, J.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

S. Hahn, M. Bode, J. Luttmann, and H.-D. Hoffmann, “FULAS: High energy laser source for future LIDAR applications,” in Proceeding of ICSO—International Conference on Space Optics, Biarriz, France, 18 Oct., 2016.

Meissner, A.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Metz, B.

Meyer, R.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

Meynart, R.

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

Michaelis, H.

Millet, B.

C. Stephan, G. Ehret, B. Millet, and P. Flamant, “Methane monitoring from space—an overview of the MERLIN instrument,” in Proceeding of ICSO—International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 Oct., 2012.

M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.

Morasch, V.

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Murphy, E.

Nicklaus, K.

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Ostermeyer, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Piazza, D.

Plum, H. D.

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

Plum, H.-D.

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

Poprawe, R.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

Quatrevalet, M.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Rech, M.

Reitebuch, O.

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

Russbueldt, P.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

Sartorius, T.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

Schlösser, M.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

Schweyer, S.

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Seiferlin, K.

Siegman, A. E.

Stephan, C.

C. Stephan, G. Ehret, B. Millet, and P. Flamant, “Methane monitoring from space—an overview of the MERLIN instrument,” in Proceeding of ICSO—International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 Oct., 2012.

Strotkamp, M.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

Thomas, N.

Traub, M.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

Trefzger, B.

Treichel, R.

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

Vierkötter, M.

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

Weidlich, K.

Weimer, P.

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

Weitenberg, J.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

Wester, R.

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

Wieching, K.

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

Wirth, M.

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

Wuehrer, C.

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

Wührer, C.

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

Wüppen, J.

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

Zeller, P.

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Löhring, A. Meissner, D. Hoffmann, A. Fix, G. Ehret, and M. Alpers, “Diode-pumped single-frequency-Nd:YGG-MOPA for water–vapor DIAL measurements: Design, setup and performance,” Appl. Phys. B 102, 917–935 (2011).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

P. Russbueldt, D. Hoffmann, M. Höfer, J. Löhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, and R. Poprawe, “Innoslab Amplifiers,” IEEE J. Sel. Topics Quantum Electron. 21, 447–463 (2015).
[Crossref]

Proc. SPIE (7)

Y. Durand, E. Chinal, M. Endemann, R. Meynart, O. Reitebuch, and R. Treichel, “ALADIN airborne demonstrator: A Doppler wind lidar to prepare ESA’s ADM-Aeolus explorer mission,” Proc. SPIE 6296, 62961D (2006).
[Crossref]

M. Traub, H.-D. Hoffmann, H.-D. Plum, K. Wieching, P. Loosen, and R. Poprawe, “Homogenization of high power diode laser beams for pumping and direct applications,” Proc. SPIE 6104, 61040Q (2006).
[Crossref]

F. Elsen, M. Livrozet, M. Strotkamp, J. Wüppen, B. Jungbluth, R. Kasemann, J. Löhring, A. Meissner, R. Meyer, D. Hoffmann, and R. Poprawe, “Demonstration of a 100mJ OPO/OPA for future lidar applications and LIDT testing of optical components for MERLIN,” Proc. SPIE 10082, 100821L (2017).
[Crossref]

F. Elsen, M. Heinzig, M. Livrozet, J. Löhring, J. Wüppen, C. Büdenbender, A. Fix, B. Jungbluth, and D. Hoffmann, “Feasibility and performance study for a space-borne 1645  nm OPO for French-German satellite mission MERLIN,” Proc. SPIE 9135, 913515 (2014).
[Crossref]

K. Nicklaus, V. Morasch, M. Hoefer, J. Luttmann, M. Vierkötter, M. Ostermeyer, J. Höffner, C. Lemmerz, and D. Hoffmann, “Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems,” Proc. SPIE 6451, 64511L (2007).
[Crossref]

J. Luttmann, K. Nicklaus, V. Morasch, S. Fu, M. Höfer, M. Traub, D. Hoffmann, R. Treichel, C. Wührer, and P. Zeller, “Very high-efficiency frequency-tripled Nd:YAG MOPA for space-borne LIDAR,” Proc. SPIE 6871, 687109 (2008).
[Crossref]

J. Löhring, J. Luttmann, R. Kasemann, M. Schlösser, J. Klein, D. Hoffmann, A. Amediek, C. Büdenbender, A. Fix, M. Wirth, M. Quatrevalet, and G. Ehret, “INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane,” Proc. SPIE 8959, 89590J (2014).
[Crossref]

Other (6)

M. Bode, M. Alpers, B. Millet, G. Ehret, and P. Flamant, “MERLIN: An integrated path differential absorption (IPDA) LIDAR for global methane remote sensing,” in Proceeding of ICSO—International Conference on Space Optics, Adeje, Tenerife, Spain, 7–10 Oct., 2014.

S. Hahn, P. Weimer, C. Wuehrer, J. Klein, J. Luttmann, and H. D. Plum, “FULAS: High energy laser source for future lidar applications,” in Proceeding of ICSO—International Conference on Space Optics, Tenerife, Canary Islands, Spain, 7–10 Oct., 2014.

S. Hahn, M. Bode, J. Luttmann, and H.-D. Hoffmann, “FULAS: High energy laser source for future LIDAR applications,” in Proceeding of ICSO—International Conference on Space Optics, Biarriz, France, 18 Oct., 2016.

M. Quatrevalet, A. Amediek, A. Fix, C. Kiemle, M. Wirth, C. Büdenbender, S. Schweyer, G. Ehret, D. Hoffmann, A. Meissner, J. Löhring, and J. Luttmann, “CHARM-F: The airborne integral path differential absorption lidar for simultaneous measurements of atmospheric CO2 and CH4,” in Proceeding of: 25th International Laser Radar Conference (ILRC), St. Petersburg, Russia, 5–9 July, 2010, pp. 775–778.

C. Stephan, G. Ehret, B. Millet, and P. Flamant, “Methane monitoring from space—an overview of the MERLIN instrument,” in Proceeding of ICSO—International Conference on Space Optics, Ajaccio, Corsica, France, 9–12 Oct., 2012.

P. Loosen and A. Knitsch, “Incoherent beam superposition,” in High Power Diode Lasers and Applications, F. Bachmann, P. Loosen, and R. Poprawe, eds., 1st ed. (Springer, 2010), pp. 139–142.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Optical energy density distribution for a seed energy of 80 mJ and a pump energy of 2.5 J on the incoupling mirror (first row), laser crystal (second row), and outcoupling mirror (third row) within the second amplifier stage, generated by a detailed simulation based on wave optics, including amplification and diffraction effects.
Fig. 2.
Fig. 2. Functional groups of the beam generation chain (top) and photo of the whole laser system (bottom).
Fig. 3.
Fig. 3. Photo of the oscillator section with sketched-in beam path (top), and scheme of the oscillator with outcoupling mirror (OC), folding mirrors (FMs), quarter-wave plates (QWPs), pumping mirrors (PMs), crystal (CRY), Pockels cell (PC), thin-film polarizer (TFP), and end mirror (EM) (bottom).
Fig. 4.
Fig. 4. Photo of the first amplifier section with the beam path sketched in orange (top) and scheme of the first amplifier (bottom).
Fig. 5.
Fig. 5. Detailed photo of the amplifier resonator of the second amplifier stage with the beam path sketch in red (top) and the scheme of the second amplifier (bottom).
Fig. 6.
Fig. 6. Beam profile of the pump line in the crystal of the second amplifier with a top-heat distribution in the slow axis and a Gaussian distribution in the fast axis.
Fig. 7.
Fig. 7. Pulse energy (left axis), efficiency (output pulse energy to pump-pulse energy from the pump fibers, right axis) and pulse duration (inset), depending on the pump-pulse energy for different pump-pulse durations.
Fig. 8.
Fig. 8. Measured output pulse energy (left axis) and extraction efficiency (extracted pulse energy to pump-pulse energy behind all pump optics excluding the pump mirrors, right axis) of the first amplifier as a function of the pump energy (with 200 μs pump pulse duration) for different seed energies.
Fig. 9.
Fig. 9. Beam quality measurement of the output beam after cylindrical beam shaping.
Fig. 10.
Fig. 10. Measured pulse energy (left axis) and efficiency (right axis) after the second amplifier as a function of the seed energy into the second amplifier at a pump-pulse energy of 1900 mJ and pump-pulse duration of 200 μs.

Tables (3)

Tables Icon

Table 1. Summary of the Design Parameters of the Oscillator

Tables Icon

Table 2. Summary of the Design Parameters of the Two Innoslab Amplifier Stages

Tables Icon

Table 3. Summary of the Output Parameters of the Three Stages

Metrics