Abstract

We present modeling and performance of a solid, fused silica, 3-mirror Fabry–Perot-type etalon. 3-mirror etalons have been known for decades to have superior theoretical performance but for the first time we demonstrate an etalon with sufficient quality to realize the benefits of the more complex design. 3-mirror etalons have better passband shape and higher contrast ratio enabling significantly improved wavelength separation. We show the optical cavity design and construction of the new etalon and show >95% peak transmission, improved passband shape and 20 dB better out-of-band rejection than a similar 2-mirror etalon.

Full Article  |  PDF Article
OSA Recommended Articles
Digital synthesis of optical interleaver based on a solid multi-mirror Fabry–Perot interferometer

Juan Zhang, Dong Hua, Yipeng Ding, and Yang Wang
Appl. Opt. 56(36) 9976-9983 (2017)

Fabry–Perot etalon with polymer cholesteric liquid-crystal mirrors

Jay E. Stockley, Gary D. Sharp, and Kristina M. Johnson
Opt. Lett. 24(1) 55-57 (1999)

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).
  2. H. van de Stadt and J. H. Muller, “Multimirror Fabry-Perot Interferometers,” J. Opt. Soc. Am. A 2, 1363–1370 (1985).
    [Crossref]
  3. H. F. Taylor, “Design of multireflector resonant bandpass filters for guided wave optics,” J. Lightwave Technol. 19, 866–871 (2001).
    [Crossref]
  4. W. Gunning, “Double-cavity electrooptic Fabry–Perot tunable filter,” Appl. Opt. 21, 3129–3131 (1982).
    [Crossref]
  5. J. Stone, L. W. Stultz, and A. A. M. Saleh, “Three-mirror fibre Fabry–Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
    [Crossref]
  6. F. A. Theopold, C. Weitkamp, and W. Michaelis, “Double-cavity etalon in the near infrared,” Opt. Lett. 18, 253–254 (1993).
    [Crossref]
  7. D. C. Flanders, “Dual cavity MEMS tunable Fabry–Perot filter,” U.S. patent6424466 B1(2May2001).
  8. S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry–Perot cavities,” Opt. Express 16, 231–236 (2008).
    [Crossref]
  9. S. A. Alboon and R. G. Lindquist, “Flat-top/distortionless tunable filters based on liquid crystal multi cavities for DWDM applications,” in IEEE Southeastcon (2008), pp. 117–122.
  10. M. A. Stephen, M. A. Krainak, and M. E. Fahey, “Lateral transfer recirculating etalon spectrometer,” Opt. Express 23, 30020–30027 (2015).
    [Crossref]
  11. M. A. Stephen and M. E. Fahey, “Lateral transfer recirculating etalon receiver for methane spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2016).
  12. LightMachinery, https://lightmachinery.com/optical-design-center/more-optical-design-tools/dual-etalon-designer/ .

2015 (1)

2008 (1)

2001 (1)

1993 (1)

1990 (1)

J. Stone, L. W. Stultz, and A. A. M. Saleh, “Three-mirror fibre Fabry–Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

1985 (1)

1982 (1)

Alboon, S. A.

S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry–Perot cavities,” Opt. Express 16, 231–236 (2008).
[Crossref]

S. A. Alboon and R. G. Lindquist, “Flat-top/distortionless tunable filters based on liquid crystal multi cavities for DWDM applications,” in IEEE Southeastcon (2008), pp. 117–122.

Fahey, M. E.

M. A. Stephen, M. A. Krainak, and M. E. Fahey, “Lateral transfer recirculating etalon spectrometer,” Opt. Express 23, 30020–30027 (2015).
[Crossref]

M. A. Stephen and M. E. Fahey, “Lateral transfer recirculating etalon receiver for methane spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2016).

Flanders, D. C.

D. C. Flanders, “Dual cavity MEMS tunable Fabry–Perot filter,” U.S. patent6424466 B1(2May2001).

Gunning, W.

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).

Krainak, M. A.

Lindquist, R. G.

S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry–Perot cavities,” Opt. Express 16, 231–236 (2008).
[Crossref]

S. A. Alboon and R. G. Lindquist, “Flat-top/distortionless tunable filters based on liquid crystal multi cavities for DWDM applications,” in IEEE Southeastcon (2008), pp. 117–122.

Michaelis, W.

Muller, J. H.

Saleh, A. A. M.

J. Stone, L. W. Stultz, and A. A. M. Saleh, “Three-mirror fibre Fabry–Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

Stephen, M. A.

M. A. Stephen, M. A. Krainak, and M. E. Fahey, “Lateral transfer recirculating etalon spectrometer,” Opt. Express 23, 30020–30027 (2015).
[Crossref]

M. A. Stephen and M. E. Fahey, “Lateral transfer recirculating etalon receiver for methane spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2016).

Stone, J.

J. Stone, L. W. Stultz, and A. A. M. Saleh, “Three-mirror fibre Fabry–Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

Stultz, L. W.

J. Stone, L. W. Stultz, and A. A. M. Saleh, “Three-mirror fibre Fabry–Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

Taylor, H. F.

Theopold, F. A.

van de Stadt, H.

Weitkamp, C.

Appl. Opt. (1)

Electron. Lett. (1)

J. Stone, L. W. Stultz, and A. A. M. Saleh, “Three-mirror fibre Fabry–Perot filters of optimal design,” Electron. Lett. 26, 1073–1074 (1990).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (1)

Other (5)

D. C. Flanders, “Dual cavity MEMS tunable Fabry–Perot filter,” U.S. patent6424466 B1(2May2001).

S. A. Alboon and R. G. Lindquist, “Flat-top/distortionless tunable filters based on liquid crystal multi cavities for DWDM applications,” in IEEE Southeastcon (2008), pp. 117–122.

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998).

M. A. Stephen and M. E. Fahey, “Lateral transfer recirculating etalon receiver for methane spectroscopy,” in Conference on Lasers and Electro-Optics (CLEO) (2016).

LightMachinery, https://lightmachinery.com/optical-design-center/more-optical-design-tools/dual-etalon-designer/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Transmission as a function of wavelength of an FPE, two FPEs in series, and a 3-mirror etalon (3ME) all with the same bandwidth and free spectral range shown on a log scale; inset shows a zoomed linear view of the transmission peak, demonstrating higher transmission within the passband and faster transition between transmission and rejection. The table shows the reflectivity and finesse of each etalon.
Fig. 2.
Fig. 2. Graphic illustration of an FPE and 3-mirror etalon. The additional cavity in the 3-mirror etalon reinforces the desired filtering behavior.
Fig. 3.
Fig. 3. Image of FPE (left) and 3-mirror etalon (right) fabricated by LightMachinery, Inc.
Fig. 4.
Fig. 4. Modeled results of the effect on the transmission peak of a variation in thickness between the two spacers in the 3-mirror etalon. The difference in thickness is scaled to wavelength units, but for absolute conversion λ / 50 = 33    nm .
Fig. 5.
Fig. 5. Illustration of the sensitivity of the center mirror reflectivity on the central transmission performance.
Fig. 6.
Fig. 6. Measurement block diagram of the lab setup to characterize the etalon transmission.
Fig. 7.
Fig. 7. Normalized transmission versus the wavelength (logarithmic scale) of similar Fabry–Perot and 3-mirror etalons.
Fig. 8.
Fig. 8. Transmission versus the relative wavelength on a linear scale to show the passband performance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 1 + F * sin 2 ( δ / 2 ) ,

Metrics