Abstract

We present a method of designing a light-emitting diode (LED) luminaire for non-Lambertian road surfaces, in which we optimized the overlap between the lighting areas of a luminaire and its adjacent luminaires to attain balance between uniformity of luminance and illuminance. The goal of the balance is to approach highly uniform luminance and raise illuminance uniformity as high as possible. The optimal illuminance rendered by a single luminaire and the corresponding far-field intensity were derived from the optimal overlap condition, and, thus, the optical model was established. The performance of the model is as follows: overall uniformity of luminance (UO) is 0.91, longitudinal uniformity of Luminance (UL) is 0.92, threshold increment (TI) is 1.64%, uniformity of horizontal illuminance (UHE) is 0.66, and surround ratio (SR) is 0.52. Finally, a compact freeform lens capping an LED was constructed to realize the optical model. The performance of the luminaire designed with arrayed units of an LED capped by the freeform lens is as follows: UO is 0.80, UL is 0.85, TI is 3.57%, UHE is 0.56, and SR is 0.51. In addition, the luminaire provides 19,600 lumens of luminous flux, of which 68% and 54% are projected on the target area and roadway alone, respectively, while 27% is absorbed by the surrounding materials.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription