Abstract

A mode-locked erbium-doped fiber ring laser that is easy to set up is proposed and experimentally demonstrated to generate a high-repetition-rate optical pulse train with an ultrashort pulse width. The laser combines a rational harmonic mode-locking technique and charcoal nanoparticles as saturable absorbers. Compared to a solely active mode-locking scheme, the scheme with charcoal nanoparticles can remove the supermodes and narrow the pulse width by a factor of 0.57 at a repetition rate of 20 GHz. Numerical simulation of the laser performance is also provided, which shows good agreement with the experimental results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-amplitude and self-phase modulation of the charcoal mode-locked erbium-doped fiber lasers

Yung-Hsiang Lin, Jui-Yung Lo, Wei-Hsuan Tseng, Chih-I Wu, and Gong-Ru Lin
Opt. Express 21(21) 25184-25196 (2013)

Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers

Yung-Hsiang Lin, Chun-Yu Yang, Sheng-Fong Lin, and Gong-Ru Lin
Opt. Mater. Express 5(2) 236-253 (2015)

High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking

Xiang Zhang, Hongyu Hu, Wenbo Li, and Niloy K. Dutta
Appl. Opt. 55(28) 7885-7891 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription