Abstract

A local radial basis function meshless scheme (LRBFM) is developed to solve polarized radiative transfer in participating media containing randomly oriented axisymmetric particles in which radial basis functions augmented with polynomial basis are employed to construct the trial functions, and the vector radiative-transfer equation based on the discrete-ordinates approach is discretized directly by collocation method. The LRBFM belongs to a class of truly meshless methods that do not need any mesh or any numerical integration scheme. Performances of the LRBFM are verified with analytical solutions and other numerical results reported earlier in the literature via five various test cases. The predicted angular distribution of brightness temperature and Stokes vector by the LRBFM agree very well with the benchmark. It is demonstrated that the LRBFM is accurate to solve vector radiative transfer in participating media with randomly oriented axisymmetric particles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Equivalence of internal and external mixture schemes of single scattering properties in vector radiative transfer

Lipi Mukherjee, Peng-Wang Zhai, Yongxiang Hu, and David M. Winker
Appl. Opt. 56(14) 4105-4112 (2017)

Polarized radiative transfer in an arbitrary multilayer semitransparent medium

Xun Ben, Hong-Liang Yi, and He-Ping Tan
Appl. Opt. 53(7) 1427-1441 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription