Abstract

In conventional microscopy, specimens lying within the depth of field are clearly recorded whereas other parts are blurry. Although digital holographic microscopy allows post-processing on holograms to reconstruct multifocus images, it suffers from defocus noise as a traditional microscope in numerical reconstruction. In this paper, we demonstrate a method that can achieve extended focused imaging (EFI) and reconstruct a depth map (DM) of three-dimensional (3D) objects. We first use a depth-from-focus algorithm to create a DM for each pixel based on entropy minimization. Then we show how to achieve EFI of the whole 3D scene computationally. Simulation and experimental results involving objects with multiple axial sections are presented to validate the proposed approach.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extended focused image in microscopy by digital holography

Pietro Ferraro, Simonetta Grilli, Domenico Alfieri, Sergio De Nicola, Andrea Finizio, Giovanni Pierattini, Bahram Javidi, Giuseppe Coppola, and Valerio Striano
Opt. Express 13(18) 6738-6749 (2005)

Extended focused imaging for digital holograms of macroscopic three-dimensional objects

Conor P. McElhinney, Bryan M. Hennelly, and Thomas J. Naughton
Appl. Opt. 47(19) D71-D79 (2008)

Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm

Fengjun Zhao, Xiaochao Qu, Xin Zhang, Ting-Chung Poon, Taegeun Kim, You Seok Kim, and Jimin Liang
Opt. Express 20(6) 5942-5954 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription