Abstract

Beam-propagation-based phase recovery approaches, also known as phase retrieval methods, retrieve the amplitude and the phase of arbitrary complex-valued fields. We present and experimentally demonstrate a simple and robust iterative method using a liquid crystal spatial light modulator located at an object diffraction plane. M random phase masks are applied between the object and the image sensor using the modulator, and then M diffraction patterns are collected in the Fourier plane. An iterative algorithm using these patterns and simulating the propagation of the light between the two planes allow us to recover the object wavefront. The use of this type of dynamic modulator makes the experimental setup simpler and more flexible. We need no a priori knowledge about the object field, and the convergence rate is high. Simulation results show that the method exhibits high immunity to noise and does not suffer any stagnation problem. However, experimental results have shown that the technique is sensitive to the cross talk of the modulator. We propose a method for compensating these modulator defects that are validated by experimental results.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of a spatial light modulator and its application in phase retrieval

C. Kohler, F. Zhang, and Wolfgang Osten
Appl. Opt. 48(20) 4003-4008 (2009)

Backplane aberration calibration of spatial light modulators using a phase-retrieval algorithm

Xiao Chen, Zhiguang Shi, Xiaotian Chen, Jicheng Li, and Wei Liu
Appl. Opt. 55(31) 8916-8924 (2016)

Automated compensation of misalignment in phase retrieval based on a spatial light modulator

Mostafa Agour, Claas Falldorf, Christoph v. Kopylow, and Ralf B. Bergmann
Appl. Opt. 50(24) 4779-4787 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription