Abstract

High dynamic range (HDR) images can only be backward-compatible with existing low dynamic range (LDR) imaging systems after being processed by tone-mapping operators. Hence, the quality assessment (QA) of tone-mapped HDR images has become an important and challenging issue in HDR imaging research. In this paper, we propose a naturalness index for a tone-mapped image to predict its quality. First, we extract the statistical features of the tone-mapped image’s luminance value and use it to evaluate the brightness naturalness with no reference information. Meanwhile, we use perceptive color, image contrast, and detail information to represent the image content and predict their naturalness qualities, respectively. Then, the four components of the naturalness qualities are combined to yield the overall naturalness quality of the tone-mapped image. Experimental results on a publicly available database demonstrated that, in comparison with a traditional LDR image QA method and a leading tone-mapped image QA method, the proposed method has better performance in evaluating a tone-mapped image’s quality.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
No-reference high-dynamic-range image quality assessment based on tensor decomposition and manifold learning

Feifan Guan, Gangyi Jiang, Yang Song, Mei Yu, Zongju Peng, and Fen Chen
Appl. Opt. 57(4) 839-848 (2018)

Which tone-mapping operator is the best? A comparative study of perceptual quality

Xim Cerda-Company, C. Alejandro Parraga, and Xavier Otazu
J. Opt. Soc. Am. A 35(4) 626-638 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription