Abstract

We report the extended phase-matching (EPM) properties of two kinds of periodically poled potassium niobate (KNbO3 or KN) crystals (i.e., periodic 180°- and 90°-domain structures) that are highly useful for the generation of polarization-entangled photon pairs in the mid-infrared (IR) spectral region. Under the degenerate Type II spontaneous parametric downconversion process satisfying the EPM condition, an input single photon with a frequency of 2ω generates a pair of synchronized photons with identical frequencies of ω that are orthogonally polarized with respect to each other (i.e., the frequency-coincident, polarization-entangled biphoton states). Our simulation results illustrate that the EPM is achievable in the mid-IR spectral region: at the wavelengths of 3.80 μm and 4.03 μm for periodic 90°- and 180°-domain structures, respectively. We will describe in detail the EPM properties of both cases in terms of interaction types and the corresponding nonlinear optic coefficients, phase-matching bandwidths, and domain poling periods. The calculated EPM bandwidths are much broader than 200 nm in the mid-IR for both cases, exhibiting a great potential for nonlinear-optic signal processing in quantum communication systems operating in the mid-IR bands.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide

Shin Arahira, Naoto Namekata, Tadashi Kishimoto, Hiroki Yaegashi, and Shuichiro Inoue
Opt. Express 19(17) 16032-16043 (2011)

Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4

Fabian Steinlechner, Marta Gilaberte, Marc Jofre, Thomas Scheidl, Juan P. Torres, Valerio Pruneri, and Rupert Ursin
J. Opt. Soc. Am. B 31(9) 2068-2076 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer, 2001).
  2. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
    [Crossref]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [Crossref]
  4. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
    [Crossref]
  5. F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri, and R. Ursin, “Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4,” J. Opt. Soc. Am. B 31, 2068–2076 (2014).
    [Crossref]
  6. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
    [Crossref]
  7. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
    [Crossref]
  8. M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
    [Crossref]
  9. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
    [Crossref]
  10. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
    [Crossref]
  11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref]
  12. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
    [Crossref]
  13. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
    [Crossref]
  14. A. Predojevic, S. Grabher, and G. Weihs, “Pulsed Sagnac source of polarization entangled photon pairs,” Opt. Express 20, 25022–25029 (2012).
    [Crossref]
  15. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
    [Crossref]
  16. R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
    [Crossref]
  17. S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
    [Crossref]
  18. Y. Cao, H. Liang, J. Yin, H.-L. Yong, F. Zhou, Y.-P. Wu, J.-G. Ren, Y.-H. Li, G.-S. Pan, T. Yang, X. Ma, C.-Z. Peng, and J.-W. Pan, “Entanglement-based quantum key distribution with biased basis choice via free space,” Opt. Express 21, 27260–27268 (2013).
    [Crossref]
  19. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18, 10282–10288 (2010).
    [Crossref]
  20. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
    [Crossref]
  21. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
    [Crossref]
  22. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
    [Crossref]
  23. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  24. T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
    [Crossref]
  25. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
    [Crossref]
  26. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
    [Crossref]
  27. M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
    [Crossref]
  28. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
    [Crossref]
  29. R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
    [Crossref]
  30. A. Krier, ed., Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).
  31. MIRTHE+ (Mid-Infrared Technologies for Health and the Environment), http://www.mirthe-erc.org/mirthecenter .
  32. K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.
  33. B. Zysset, I. Biaggio, and P. N. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
    [Crossref]
  34. S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
    [Crossref]
  35. J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
    [Crossref]
  36. D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).
  37. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).
  38. HC Photonics Corp., http://hcphotonics.com .

2015 (2)

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (1)

2011 (1)

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

2010 (2)

2009 (1)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

2008 (1)

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

2007 (2)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

2006 (1)

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

2005 (2)

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

2004 (1)

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

2002 (2)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

2000 (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

1999 (1)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

1997 (2)

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

1994 (1)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

1993 (1)

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

1992 (1)

1990 (1)

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

1989 (1)

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

1982 (1)

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Albota, M. A.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Altepeter, J. B.

Asami, S.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Aspect, A.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Beyer, J.

Biaggio, I.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Calkins, B.

Cao, Y.

Colbeck, R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Dalibard, J.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

Endo, H.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Fedrizzi, A.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

Fiorentino, M.

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Fisher, K.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Fujiwara, M.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

Fulconis, J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Gallo, K.

Gerrits, T.

Gilaberte, M.

Giovannetti, V.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

Gisin, N.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Giustina, M.

Grabher, S.

Grice, W. P.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Gröblacher, S.

Gunter, P.

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

Gunter, P. N.

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

Hall, M. A.

Hamel, D. R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Han, T. S.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Herbst, T.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

Hirohashi, J.

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Horne, M. A.

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Ibsen, M.

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Jennewein, T.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

Jin, R.-B.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

Jofre, M.

Jundt, D. H.

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

Kamio, H.

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Kärtner, F. X.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

Kim, T.

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Kumar, P.

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Lee, K. J.

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18, 10282–10288 (2010).
[Crossref]

K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.

Li, Y.-H.

Liang, H.

Lita, A.

Liu, S.

Ma, X.

Maccone, L.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Mandel, L.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Mech, A.

Medic, M.

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Miki, S.

Nam, S. W.

Nespoli, M.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Ochi, T.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Pan, G.-S.

Pan, J.-W.

Parmigiani, F.

Pasiskevicius, V.

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

Patel, M.

Peng, C.-Z.

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Petropoulos, P.

Poppe, A.

Predojevic, A.

Prevedel, R.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Pruneri, V.

Ramelow, S.

Rarity, J. G.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Ren, J.-G.

Resch, K. J.

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Richardson, D. J.

Roger, G.

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Sasaki, M.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

R.-B. Jin, R. Shimizu, K. Wakui, M. Fujiwara, T. Yamashita, S. Miki, H. Terai, Z. Wang, and M. Sasaki, “Pulsed Sagnac polarization-entangled photon source with a PPKTP crystal at telecom wavelength,” Opt. Express 22, 11498–11507 (2014).
[Crossref]

Scheidl, T.

F. Steinlechner, M. Gilaberte, M. Jofre, T. Scheidl, J. P. Torres, V. Pruneri, and R. Ursin, “Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4,” J. Opt. Soc. Am. B 31, 2068–2076 (2014).
[Crossref]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Shapiro, J. H.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

Shichijyo, S.

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

Shimizu, R.

Shimony, A.

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Steinlechner, F.

Tajima, A.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Takeoka, M.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Terai, H.

Tiefenbacher, F.

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Torres, J. P.

Ursin, R.

Wadsworth, W. J.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

Wakui, K.

Walmsley, I. A.

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

Wang, L. J.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Wang, Z.

Weihs, G.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

Wieczorek, W.

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Wu, Y.-P.

Yamada, K.

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Yamashita, T.

Yang, T.

Yin, J.

Yong, H.-L.

Yoshino, K.-I.

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

Zbinden, H.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Zeilinger, A.

S. Ramelow, A. Mech, M. Giustina, S. Gröblacher, W. Wieczorek, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, A. Zeilinger, and R. Ursin, “Highly efficient heralding of entangled single photons,” Opt. Express 21, 6707–6717 (2013).
[Crossref]

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Zhou, F.

Zou, X. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

Zysset, B.

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

B. Zysset, I. Biaggio, and P. N. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
[Crossref]

Appl. Phys. B (1)

J. Hirohashi and V. Pasiskevicius, “Quasi-phase-matched frequency conversion in KNbO3 structures consisting of 90° ferroelectric domains,” Appl. Phys. B 81, 761–763 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Sasaki, M. Fujiwara, R.-B. Jin, M. Takeoka, T. S. Han, H. Endo, K.-I. Yoshino, T. Ochi, S. Asami, and A. Tajima, “Quantum photonic network: concept, basic tools, and future issues,” IEEE J. Sel. Top. Quantum Electron. 21, 49–61 (2015).
[Crossref]

J. Korea Phys. Soc. (1)

T. Kim and K. J. Lee, “Extended phase matching characteristics in periodically poled potassium titanyl phosphate isomorphs,” J. Korea Phys. Soc. 67, 837–842 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

S. Shichijyo, J. Hirohashi, H. Kamio, and K. Yamada, “Total refraction of p-polarized light at the boundary of 90°-domains in the ferroelectric crystal,” Jpn. J. Appl. Phys. 43, 3413–3418 (2004).
[Crossref]

Nat. Phys. (2)

A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys. 5, 389–392 (2009).
[Crossref]

R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, and K. J. Resch, “Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement,” Nat. Phys. 7, 757–761 (2011).
[Crossref]

Nonlinear Opt. (1)

D. H. Jundt, P. Gunter, and B. Zysset, “A temperature-dependent dispersion equation for KNbO3,” Nonlinear Opt. 4, 341–345 (1993).

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (6)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66, 043813 (2002).
[Crossref]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994).
[Crossref]

W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997).
[Crossref]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997).
[Crossref]

T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).
[Crossref]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008).
[Crossref]

Phys. Rev. Lett. (8)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99, 120501 (2007).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

M. A. Horne, A. Shimony, and A. Zeilinger, “Two-particle interferometry,” Phys. Rev. Lett. 62, 2209–2212 (1989).
[Crossref]

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65, 321–324 (1990).
[Crossref]

A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell’s inequalities using time-varying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94, 169903 (2005).
[Crossref]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states with coincident frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[Crossref]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[Crossref]

Other (7)

D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer, 2001).

A. Krier, ed., Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).

MIRTHE+ (Mid-Infrared Technologies for Health and the Environment), http://www.mirthe-erc.org/mirthecenter .

K. J. Lee, in Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, SOF) (Optical Society of America, 2016), paper SeTu2E.4.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optic Crystals, 3rd ed. (Springer-Verlag, 1999).

HC Photonics Corp., http://hcphotonics.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of a PPKN crystal with periodic 180°-domain structures. The green arrow in each domain denotes the direction of a spontaneous polarization (Ps). In a degenerate Type II SPDC using the nonlinear optic coefficient of d15, a y-polarized input photon with a frequency of 2ω generates a pair of the y-, and the z-polarized photons with ω (i.e., 2ωyωy+ωz).

Fig. 2.
Fig. 2.

Schematic diagram of a PPKN crystal with periodic 90°-domain structures. The green arrow in each domain denotes the direction of Ps. In a degenerate Type II SPDC using the nonlinear optic coefficient of d24, a x-polarized input photon with a frequency of 2ω generates a pair of the x- and the y-polarized photons with ω (i.e., 2ωxωx+ωy).

Fig. 3.
Fig. 3.

Poling periods of ferroelectric domains in two types of PPKNs plotted as a function of the generated photon wavelength. The results correspond to the case of degenerate Type II QPM SPDC.

Fig. 4.
Fig. 4.

GVM behaviors of two types of PPKNs plotted as a function of the generated photon wavelength.

Fig. 5.
Fig. 5.

Normalized intensities of the generated photons calculated for two types of PPKNs. The results clearly illustrate the broad spectral responses of Type II SPDC satisfying the EPM condition.

Fig. 6.
Fig. 6.

(a) Temperature behaviors of λGV for two types of PPKNs. For each case, λGV stays inside the mid-IR under the temperature change of 20°C–180°C. (b) The variation of Λ corresponding to λGVs calculated at the given temperature.

Fig. 7.
Fig. 7.

Temperature variation of the EPM bandwidths (i.e., the FWHMs of the main spectral bands as discussed in Fig. 5).

Tables (2)

Tables Icon

Table 1. Type II Interaction of Two Types of PPKN and the Corresponding Effective Nonlinear Optic Coefficients

Tables Icon

Table 2. Parameters Required for the EPM in Two Types of PPKNsa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

deff(2ω;ω,ω)=ipi(2ω)jkdijkpj(ω)pk(ω),
Δkki(2ω)ki(ω)kj(ω)+2π/Λ,
Λ=λ|2ni(λ/2)ni(λ)nj(λ)|λ2Δn,
ΔTL=Δngc,
dΛdλ=12Δng(Δn)2.

Metrics