Abstract

Colloidal drops—suspensions, dispersions, emulsions—are widespread in the process industry but are difficult to characterize by size, velocity, and concentration of particulate matter in the drop. The present study investigates the use of the time-shift (TS) technique for such measurements. Numerically, a model based on ray tracing is developed, incorporating interactions with randomly placed monodispersed scattering centers within the spherical drop. The model creates a random walk propagation trajectory, known from radiative transfer problems. The model approximates Mie scattering from each internal particle with a Gaussian distribution. Experiments are performed using a conventional TS instrument, first with water as a reference and for validation, and then with different concentrations of a milk/water emulsion. Comparison of the modeled and received signals exhibits very good agreement, confirming the possibility of measuring the colloidal concentration in drops using the TS technique.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics

Edouard Berrocal, Igor Meglinski, and Mark Jermy
Opt. Express 13(23) 9181-9195 (2005)

Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering, Part 1: Collimated laser sheets

Peter A. M. Kalt, Cristian H. Birzer, and Graham J. Nathan
Appl. Opt. 46(23) 5823-5834 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription