Abstract

In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility

Yuhua Huang, Ying Zhou, Charlie Doyle, and Shin-Tson Wu
Opt. Express 14(3) 1236-1242 (2006)

Lasing in chiral photonic liquid crystals and associated frequency tuning

Andy Y.-G. Fuh, Tsung-Hsien Lin, J.-H. Liu, and F.-C. Wu
Opt. Express 12(9) 1857-1863 (2004)

References

  • View by:
  • |
  • |
  • |

  1. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).
  2. A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
    [Crossref]
  3. M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51, 082702 (2012).
    [Crossref]
  4. Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
    [Crossref]
  5. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
    [Crossref]
  6. S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
    [Crossref]
  7. I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
    [Crossref]
  8. M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23, 21243–21253 (2015).
    [Crossref]
  9. M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1  nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18, 24221–24228 (2010).
    [Crossref]
  10. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999), Chap. 7.
  11. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Chap. 6.
  12. A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7–8), 36–42 (2006).
    [Crossref]
  13. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]
  14. M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
    [Crossref]
  15. M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12, 2007–2018 (2011).
    [Crossref]
  16. K.-Y. Yu, S.-H. Chang, C.-R. Lee, T.-Y. Hsu, and C.-T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nano grooves fabricated by nano imprint lithography,” Opt. Mater. Express 4, 234–240 (2014).
    [Crossref]
  17. H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
    [Crossref]
  18. A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
    [Crossref]
  19. T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
    [Crossref]
  20. Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
    [Crossref]
  21. H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
    [Crossref]
  22. A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
    [Crossref]
  23. J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
    [Crossref]
  24. Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
    [Crossref]
  25. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
    [Crossref]
  26. Y.-S. Lo, Y.-M. Liu, and H.-C. Yeh, “Low-voltage and wide-band tuning of lasing in a dye-doped liquid-crystal sandwich structure,” Opt. Express 23, 30421–30428 (2015).
    [Crossref]
  27. M. Shasti, P. Coutino, S. Mukherjee, A. Varanytsia, T. Smith, A. P. Luchette, L. Sukhomlinova, T. Kosa, A. Munoz, and B. Taheri, “Reverse mode switching of the random laser emission in dye doped liquid crystals under homogeneous and inhomogeneous electric fields,” Photon. Res. 4, 7–12 (2016).
    [Crossref]
  28. T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39, 6490–6493 (2014).
    [Crossref]
  29. I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mat. Express 1, 1484–1493 (2011).
    [Crossref]
  30. M.-Y. Jeong, K.-S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” J. Nanosci. Nanotechnol. 15, 7632–7639 (2015).
    [Crossref]
  31. L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
    [Crossref]
  32. K. S. Shim, J. U. Heo, S. I. Jo, Y.-J. Lee, H.-R. Kim, J.-H. Kim, and C.-J. Yu, “Temperature-independent pitch invariance in cholesteric liquid crystal,” Opt. Express 22, 15467–15472 (2014).
    [Crossref]
  33. V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
    [Crossref]
  34. T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).
  35. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
    [Crossref]
  36. L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
    [Crossref]
  37. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
    [Crossref]

2016 (1)

2015 (6)

Y.-S. Lo, Y.-M. Liu, and H.-C. Yeh, “Low-voltage and wide-band tuning of lasing in a dye-doped liquid-crystal sandwich structure,” Opt. Express 23, 30421–30428 (2015).
[Crossref]

M.-Y. Jeong, K.-S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” J. Nanosci. Nanotechnol. 15, 7632–7639 (2015).
[Crossref]

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23, 21243–21253 (2015).
[Crossref]

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

2014 (4)

2013 (1)

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

2012 (2)

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51, 082702 (2012).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

2011 (2)

I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mat. Express 1, 1484–1493 (2011).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12, 2007–2018 (2011).
[Crossref]

2010 (1)

2009 (1)

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

2008 (2)

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

2006 (8)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7–8), 36–42 (2006).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
[Crossref]

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

2005 (1)

2004 (2)

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

2003 (1)

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref]

1999 (1)

L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
[Crossref]

1998 (1)

1980 (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Adrian Reyes, J.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

Arora, V. P.

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Bahadur, B.

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Barberi, R.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Bartolino, R.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Belyakov, V. A.

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
[Crossref]

Bian, H.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Bunning, T. J.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Castellanos-Moreno, A.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

Castro-Garay, P.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

Cha, J.

Chang, S.-H.

Chanishvili, A.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Chen, C.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chen, C.-W.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chen, L.-P.

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Chen, Y.-J.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Chilaya, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Choi, H.

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Choi, S.-W.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

Chung, K.-S.

M.-Y. Jeong, K.-S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” J. Nanosci. Nanotechnol. 15, 7632–7639 (2015).
[Crossref]

Cipparrone, G.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Coles, H. J.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7–8), 36–42 (2006).
[Crossref]

Corella-Madueño, A.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

Coutino, P.

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Chap. 6.

De Santo, M. P.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

Doyle, C.

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref]

Ford, A. D.

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7–8), 36–42 (2006).
[Crossref]

Fuh, A. Y.-G.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Gardiner, D. J.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Gauza, S.

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

Ge, Z.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Genack, A. Z.

Gim, M.-J.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999), Chap. 7.

Gupta, S.

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Gutiérrez-López, S.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

Heo, J. U.

Hong, Q.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Hou, C.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Hsu, T.-Y.

Hu, W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Huang, F.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Huang, Y.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

Hur, S.-T.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

Il’chishin, I. P.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Ilchishin, I.

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Ilchishin, I. P.

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39, 6490–6493 (2014).
[Crossref]

I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mat. Express 1, 1484–1493 (2011).
[Crossref]

Jain, S.

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Jau, H.-C.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Jeong, M.-Y.

M.-Y. Jeong and J. Cha, “Firsthand in situ observation of active fine laser tuning by combining a temperature gradient and a CLC wedge cell structure,” Opt. Express 23, 21243–21253 (2015).
[Crossref]

M.-Y. Jeong, K.-S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” J. Nanosci. Nanotechnol. 15, 7632–7639 (2015).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51, 082702 (2012).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12, 2007–2018 (2011).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1  nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18, 24221–24228 (2010).
[Crossref]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Jo, S. I.

Khan, A. A.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Kim, H.-R.

Kim, J.-H.

Koerner, H.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Kopp, V. I.

Kosa, T.

Kravchuk, R. M.

Kumar, A.

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Kuo, C.-T.

Kutulya, L.

L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
[Crossref]

Lee, B. R.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

Lee, C.-R.

Lee, Y.-J.

Li, J.

H. Yu, B. Tang, J. Li, and L. Li, “Electrically tunable lasers made from electro-optically active photonics band gap materials,” Opt. Express 13, 7243–7249 (2005).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

Li, L.

Li, Q.

Li, Y.

Lin, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Lisetski, L. N.

I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mat. Express 1, 1484–1493 (2011).
[Crossref]

Liu, B.-W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Liu, H.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Liu, Y.-M.

Lo, Y.-S.

Luchette, A. P.

Matranga, M. A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

Mazzulla, A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Morris, S. M.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7–8), 36–42 (2006).
[Crossref]

Mukherjee, S.

Munoz, A.

Mykytiuk, T. V.

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39, 6490–6493 (2014).
[Crossref]

I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mat. Express 1, 1484–1493 (2011).
[Crossref]

Natarajan, L. V.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Oriol, L.

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Park, K.-W.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

Pei, Y.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Petriashvili, G.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Chap. 6.

Qasim, M. M.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Rosas-Burgos, R. A.

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

Schmidtke, J.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref]

Semenkova, G.

L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
[Crossref]

Shasti, M.

Shen, D.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Shim, K. S.

Shkolnikova, N.

L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
[Crossref]

Shpak, M. T.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Smith, T.

Song, M. H.

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

Soorya, T. N.

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Stille, W.

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref]

Sukhomlinova, L.

Sun, X.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Sutherland, R. L.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Taheri, B.

Tang, B.

Tikhonov, E.

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Tikhonov, E. A.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Tishchenko, V. G.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Tondiglia, V. P.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Vaia, R. A.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Varanytsia, A.

Vashchenko, V.

L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
[Crossref]

Vithana, H. K. M.

Wang, W.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Wei, T.-H.

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

Wilkinson, T. D.

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Wofford, J. M.

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

Wu, J. W.

M.-Y. Jeong, K.-S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” J. Nanosci. Nanotechnol. 15, 7632–7639 (2015).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51, 082702 (2012).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12, 2007–2018 (2011).
[Crossref]

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions with tuning resolution less than 1  nm in a wedge cell of dye-doped cholesteric liquid crystals,” Opt. Express 18, 24221–24228 (2010).
[Crossref]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Wu, S. T.

Wu, S.-T.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

Wu, T. X.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Yao, F.

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Yaroshchuk, O. V.

Yeh, H.-C.

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999), Chap. 7.

Yu, C.-J.

Yu, H.

Yu, K.-Y.

Zheng, Z.-G.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zhou, L.

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

Zhou, Y.

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14, 1236–1242 (2006).
[Crossref]

Adv. Mater. (2)

S.-T. Hur, B. R. Lee, M.-J. Gim, K.-W. Park, M. H. Song, and S.-W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25, 3002–3006 (2013).
[Crossref]

A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, “Lasing in dye-doped cholesteric liquid crystals: two new tuning strategies,” Adv. Mater. 16, 791–795 (2004).
[Crossref]

Appl. Phys. Lett. (3)

T.-H. Lin, H.-C. Jau, C.-H. Chen, Y.-J. Chen, T.-H. Wei, C.-W. Chen, and A. Y.-G. Fuh, “Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy,” Appl. Phys. Lett. 88, 061122 (2006).
[Crossref]

M.-Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92, 051108 (2008).
[Crossref]

Y. Huang, L.-P. Chen, C. Doyle, Y. Zhou, and S.-T. Wu, “Spatially tunable laser emission in dye-doped cholesteric polymer films,” Appl. Phys. Lett. 89, 111106 (2006).
[Crossref]

Indian J. Pure Appl. Phys. (1)

T. N. Soorya, S. Gupta, A. Kumar, S. Jain, V. P. Arora, and B. Bahadur, “Temperature dependent optical property studies of nematic mixtures,” Indian J. Pure Appl. Phys. 44, 524–531 (2006).

Int. J. Mol. Sci. (1)

M.-Y. Jeong and J. W. Wu, “Continuous spatial tuning of laser emissions in a full visible spectral range,” Int. J. Mol. Sci. 12, 2007–2018 (2011).
[Crossref]

J. Appl. Phys. (3)

A. Castellanos-Moreno, P. Castro-Garay, S. Gutiérrez-López, R. A. Rosas-Burgos, A. Corella-Madueño, and J. Adrian Reyes, “Electrically controlled reflection bands in a cholesteric liquid crystals slab,” J. Appl. Phys. 106, 023102 (2009).
[Crossref]

J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]

L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, “Electro-thermal tuning in a negative dielectric cholesteric liquid crystal material,” J. Appl. Phys. 103, 093107 (2008).
[Crossref]

J. Mater. Chem. C (1)

Z.-G. Zheng, B.-W. Liu, L. Zhou, W. Wang, W. Hu, and D. Shen, “Wide tunable lasing in photoresponsive chiral liquid crystal emulsion,” J. Mater. Chem. C 3, 2462–2470 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

M.-Y. Jeong, K.-S. Chung, and J. W. Wu, “Optical properties of laser lines and fluorescent spectrum in cholesteric liquid crystal laser,” J. Nanosci. Nanotechnol. 15, 7632–7639 (2015).
[Crossref]

JETP Lett. (1)

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Jpn. J. Appl. Phys. (1)

M.-Y. Jeong and J. W. Wu, “Temporally stable and continuously tunable laser device fabricated using polymerized cholesteric liquid crystals,” Jpn. J. Appl. Phys. 51, 082702 (2012).
[Crossref]

Liq. Cryst. (1)

H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, “Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals,” Liq. Cryst. 41, 1436–1441 (2014).
[Crossref]

Mater. Today (1)

A. D. Ford, S. M. Morris, and H. J. Coles, “Photonics and lasing in liquid crystals,” Mater. Today 9(7–8), 36–42 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
[Crossref]

L. Kutulya, V. Vashchenko, G. Semenkova, and N. Shkolnikova, “Effect of chiral dopants molecular structure on temperature dependencies of induced cholesteric helical pitch,” Mol. Cryst. Liq. Cryst. 331, 583–591 (1999).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Opt. Mat. Express (1)

I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of laser frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mat. Express 1, 1484–1493 (2011).
[Crossref]

Opt. Mater. (1)

A. A. Khan, S. M. Morris, D. J. Gardiner, M. M. Qasim, T. D. Wilkinson, and H. J. Coles, “Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants,” Opt. Mater. 42, 441–448 (2015).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. E (1)

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, T. X. Wu, and S.-T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E 74, 061705 (2006).
[Crossref]

Phys. Rev. Lett. (1)

J. Schmidtke, W. Stille, and H. Finkelmann, “Defect mode emission of a dye doped cholesteric polymer network,” Phys. Rev. Lett. 90, 083902 (2003).
[Crossref]

Prog. Quantum Electron. (1)

I. Ilchishin and E. Tikhonov, “Dye-doped cholesteric lasers: distributed feedback and photonic bandgap lasing models,” Prog. Quantum Electron. 41, 1–22 (2015).
[Crossref]

Soft Matter (1)

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8, 4882–4885 (2012).
[Crossref]

Other (2)

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999), Chap. 7.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram (a) of the cycling pitch change in the wedge cell at room temperature and (b) the pitch gradient with positive temperature gradient on the wedge cell.

Fig. 2.
Fig. 2.

CMOS camera images and a laser peak spectrum of the WR-cell: (a) juxtapositions of eight pieces of CLC texture at room temperature (the inset is a polarized microscope photo of the Cano dislocation lines), and (b) juxtapositions of eight pieces of CLC texture when the positive temperature gradient was formed along the WR-CLC cell. (c) Generated laser beam on the CLC texture. (d) PBG and generated laser peak spectra of (c) by the spectrophotometer.

Fig. 3.
Fig. 3.

Laser peaks as a function of spatial position of the (a) WL-cell and (b) WR-cell; at room temperature (□) or with positive temperature gradient along the wedge direction (○). The blue dashed lines are the SPGs at the X -positions of 2    mm (1 and 2), 6    mm (3 and 4), and 14    mm (5 and 6), respectively.

Fig. 4.
Fig. 4.

Laser line spectra and PBGs of the WR-cell with a positive temperature gradient by 50 μm X -position movements.

Fig. 5.
Fig. 5.

PBGs at the 17.5°C (solid black line), 21.3°C (dash dotted red line), 25°C (dot blue line), and 29°C (solid green) of the (a) PL-cell and (b) PR-cell. (c) PBGs depending on the chiral molecular concentration of the PC-cell. Black line, 25.5 wt. %; red line, 26.5 wt. %; blue line, 27 wt. %; green line, 27.5 wt. %.

Fig. 6.
Fig. 6.

(a) PBG bandwidth of the PL-cell and the PR-cell by temperature change. (b) PBG low- and high-energy band of the PL-cell and the PR-cell by temperature change. (c) PBG position as a function of temperature (open square and open circle) and chiral molecular (S811) concentration (solid star).

Metrics