Abstract

We demonstrate random lasing from a scattering system formed by a cholesteric liquid crystal dispersed in glycerol. Strong scattering of light is produced from the interference between the cholesteric liquid crystal microsphere and glycerol and leads to random lasing. The optical properties of random lasing, such as intensity, threshold, and the temperature effect on lasing emission are demonstrated. The random laser is distinguished from the band-edge laser generated within the cholesteric liquid crystal microspheres by analyzing the positions of the photonic band-edge of the cholesteric liquid crystal and the photoluminescence of the doped laser dye. The random laser from cholesteric liquid crystal microspheres in glycerol possesses a simple fabrication process, small volume, and low threshold, which enable it to be used in speckle-free imaging, target identification, biomedicine, document coding, and other photonic devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lasing properties of a cholesteric liquid crystal containing aggregation-induced-emission material

Nan Wang, Julian S. Evans, Ju Mei, Jianhao Zhang, Iam-Choon Khoo, and Sailing He
Opt. Express 23(26) 33938-33946 (2015)

3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 18(26) 26995-27003 (2010)

Circularly polarized unidirectional lasing from a cholesteric liquid crystal layer on a 1-D photonic crystal substrate

Byoungchoo Park, Mina Kim, Sun Woong Kim, and In Tae Kim
Opt. Express 17(15) 12323-12331 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription