Abstract

The influence of optically active turbulence on the propagation of laser beams is investigated in clear ocean water over a path length of 8.75 m. The measurement apparatus is described and the effects of optical turbulence on the laser beam are presented. The index of refraction structure constant is extracted from the beam deflection and the results are compared to independently made measures of the turbulence strength (Cn2) by a vertical microstructure profiler. Here we present values of Cn2 taken from aboard the R/V Walton Smith during the Bahamas optical turbulence exercise (BOTEX) in the Tongue of the Ocean between June 30 and July 12, 2011, spanning a range from 1014 to 1010  m2/3. To the best of our knowledge, this is the first time such measurements are reported for the ocean.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Power spectrum of refractive-index fluctuations in turbulent ocean and its effect on optical scintillation

Xiang Yi and Ivan B. Djordjevic
Opt. Express 26(8) 10188-10202 (2018)

Wide-range Prandtl/Schmidt number power spectrum of optical turbulence and its application to oceanic light propagation

Jin-Ren Yao, Hua-Jun Zhang, Ruo-Nan Wang, Jian-Dong Cai, Yu Zhang, and Olga Korotkova
Opt. Express 27(20) 27807-27819 (2019)

Optical turbulence on underwater image degradation in natural environments

Weilin Hou, Sarah Woods, Ewa Jarosz, Wesley Goode, and Alan Weidemann
Appl. Opt. 51(14) 2678-2686 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Yura, “Small-angle scattering of light by ocean water,” Appl. Opt. 10, 114–118 (1971).
    [Crossref]
  2. H. Horvath, “On the applicability of the Koschmieder visibility formula,” Atmos. Environ. 5, 177–184 (1971).
    [Crossref]
  3. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005), p. xxiii
  4. F. R. Dalgleish, A. K. Vuorenkoski, and B. Ouyang, “Extended-range undersea laser imaging: current research status and a glimpse at future technologies,” Mar. Technol. Soc. J. 47, 128–147 (2013).
    [Crossref]
  5. J. S. Jaffe, “Underwater optical imaging: the past, the present, and the prospects,” IEEE J. Ocean. Eng. 40, 683–700 (2015).
    [Crossref]
  6. W. Hou, “A simple underwater imaging model,” Opt. Lett. 34, 2688–2690 (2009).
    [Crossref]
  7. N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
    [Crossref]
  8. V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
    [Crossref]
  9. N. H. Farwell and O. Korotkova, “Multiple phase-screen simulation of oceanic beam propagation,” Proc. SPIE 9224, 922416 (2014).
    [Crossref]
  10. R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
    [Crossref]
  11. A. V. Kanaev, W. Hou, S. R. Restaino, S. Matt, and S. Gladysz, “Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric,” Opt. Express 23, 17077–17090 (2015).
    [Crossref]
  12. S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
    [Crossref]
  13. W. Hou, E. Jarosz, S. Woods, W. Goode, and A. D. Weidemann, “Impacts of underwater turbulence on acoustical and optical signals and their linkage,” Opt. Express 21, 4367–4375 (2013).
    [Crossref]
  14. W. Hou, S. Woods, E. Jarosz, W. Goode, and A. D. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51, 2678–2686 (2012).
    [Crossref]
  15. D. J. Bogucki, J. A. Domaradzki, C. Anderson, H. W. Wijesekera, J. R. V. Zaneveld, and C. Moore, “Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence,” Opt. Express 15, 7224–7230 (2007).
    [Crossref]
  16. S. Q. Duntley, “Light in the Sea*,” J. Opt. Soc. Am. 53, 214–233 (1963).
    [Crossref]
  17. F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
    [Crossref]
  18. G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, 1: general discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
    [Crossref]
  19. G. K. Batchelor, I. D. Howells, and A. A. Townsend, “Small-scale variation of convected quantities like temperature in turbulent fluid, 2: the case of large conductivity,” J. Fluid Mech. 5, 134–139 (1959).
    [Crossref]
  20. S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2005), p. xviii.
  21. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
    [Crossref]
  22. D. H. Tofsted, “Outer-scale effects on beam-wander and angle-of-arrival variances,” Appl. Opt. 31, 5865–5870 (1992).
    [Crossref]
  23. L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
    [Crossref]
  24. L. Washburn, T. F. Duda, and D. C. Jacobs, “Interpreting conductivity microstructure: estimating the temperature variance dissipation rate,” J. Atmos. Ocean. Technol. 13, 1166–1188 (1996).
    [Crossref]
  25. J. D. Nash and J. N. Moum, “Estimating salinity variance dissipation rate from conductivity microstructure measurements,” J. Atmos. Ocean. Tech. 16, 263–274 (1999).
    [Crossref]
  26. W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
    [Crossref]
  27. D. J. Bogucki and J. A. Domaradzki, “Numerical study of light scattering by a boundary-layer flow,” Appl. Opt. 44, 5286–5291 (2005).
    [Crossref]
  28. X. H. Quan and E. S. Fry, “Empirical-equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [Crossref]
  29. G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London Ser. A 164, 0476–0490 (1938).
    [Crossref]
  30. F. Rainer, “Find centroid of a monochrome laserspot within a dark background,” https://www.mathworks.com/matlabcentral/fileexchange/6490-find-centroid-of-a-monochrome-laserspot-within-a-dark-background .
  31. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Use of scintillations to measure average wind across a light-beam,” Appl. Opt. 11, 239–243 (1972).
    [Crossref]
  32. S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
    [Crossref]
  33. D. L. Fried and H. T. Yura, “Telescope-performance reciprocity for propagation in a turbulent medium,” J. Opt. Soc. Am. 62, 600–602 (1972).
    [Crossref]
  34. G. Nootz, W. Hou, F. R. Dalgleish, and W. T. Rhodes, “Determination of flow orientation of an optically active turbulent field by means of a single beam,” Opt. Lett. 38, 2185–2187 (2013).
    [Crossref]

2015 (3)

J. S. Jaffe, “Underwater optical imaging: the past, the present, and the prospects,” IEEE J. Ocean. Eng. 40, 683–700 (2015).
[Crossref]

A. V. Kanaev, W. Hou, S. R. Restaino, S. Matt, and S. Gladysz, “Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric,” Opt. Express 23, 17077–17090 (2015).
[Crossref]

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

2014 (2)

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

N. H. Farwell and O. Korotkova, “Multiple phase-screen simulation of oceanic beam propagation,” Proc. SPIE 9224, 922416 (2014).
[Crossref]

2013 (4)

W. Hou, E. Jarosz, S. Woods, W. Goode, and A. D. Weidemann, “Impacts of underwater turbulence on acoustical and optical signals and their linkage,” Opt. Express 21, 4367–4375 (2013).
[Crossref]

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

F. R. Dalgleish, A. K. Vuorenkoski, and B. Ouyang, “Extended-range undersea laser imaging: current research status and a glimpse at future technologies,” Mar. Technol. Soc. J. 47, 128–147 (2013).
[Crossref]

G. Nootz, W. Hou, F. R. Dalgleish, and W. T. Rhodes, “Determination of flow orientation of an optically active turbulent field by means of a single beam,” Opt. Lett. 38, 2185–2187 (2013).
[Crossref]

2012 (3)

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

W. Hou, S. Woods, E. Jarosz, W. Goode, and A. D. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51, 2678–2686 (2012).
[Crossref]

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
[Crossref]

2005 (1)

2000 (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
[Crossref]

1999 (1)

J. D. Nash and J. N. Moum, “Estimating salinity variance dissipation rate from conductivity microstructure measurements,” J. Atmos. Ocean. Tech. 16, 263–274 (1999).
[Crossref]

1996 (1)

L. Washburn, T. F. Duda, and D. C. Jacobs, “Interpreting conductivity microstructure: estimating the temperature variance dissipation rate,” J. Atmos. Ocean. Technol. 13, 1166–1188 (1996).
[Crossref]

1995 (1)

1992 (1)

1978 (2)

R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
[Crossref]

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[Crossref]

1972 (2)

1971 (2)

H. T. Yura, “Small-angle scattering of light by ocean water,” Appl. Opt. 10, 114–118 (1971).
[Crossref]

H. Horvath, “On the applicability of the Koschmieder visibility formula,” Atmos. Environ. 5, 177–184 (1971).
[Crossref]

1963 (1)

1959 (2)

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, 1: general discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[Crossref]

G. K. Batchelor, I. D. Howells, and A. A. Townsend, “Small-scale variation of convected quantities like temperature in turbulent fluid, 2: the case of large conductivity,” J. Fluid Mech. 5, 134–139 (1959).
[Crossref]

1938 (1)

G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London Ser. A 164, 0476–0490 (1938).
[Crossref]

Anderson, C.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005), p. xxiii

Barros, R.

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

Batchelor, G. K.

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, 1: general discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[Crossref]

G. K. Batchelor, I. D. Howells, and A. A. Townsend, “Small-scale variation of convected quantities like temperature in turbulent fluid, 2: the case of large conductivity,” J. Fluid Mech. 5, 134–139 (1959).
[Crossref]

Bogucki, D. J.

Clifford, S. F.

Dalgleish, F.

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

Dalgleish, F. R.

F. R. Dalgleish, A. K. Vuorenkoski, and B. Ouyang, “Extended-range undersea laser imaging: current research status and a glimpse at future technologies,” Mar. Technol. Soc. J. 47, 128–147 (2013).
[Crossref]

G. Nootz, W. Hou, F. R. Dalgleish, and W. T. Rhodes, “Determination of flow orientation of an optically active turbulent field by means of a single beam,” Opt. Lett. 38, 2185–2187 (2013).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Domaradzki, J. A.

Duda, T. F.

L. Washburn, T. F. Duda, and D. C. Jacobs, “Interpreting conductivity microstructure: estimating the temperature variance dissipation rate,” J. Atmos. Ocean. Technol. 13, 1166–1188 (1996).
[Crossref]

Duntley, S. Q.

Eisele, C.

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

Farwell, N.

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[Crossref]

Farwell, N. H.

N. H. Farwell and O. Korotkova, “Multiple phase-screen simulation of oceanic beam propagation,” Proc. SPIE 9224, 922416 (2014).
[Crossref]

Fried, D. L.

Fry, E. S.

Gladysz, S.

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

A. V. Kanaev, W. Hou, S. R. Restaino, S. Matt, and S. Gladysz, “Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric,” Opt. Express 23, 17077–17090 (2015).
[Crossref]

Goode, W.

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

W. Hou, E. Jarosz, S. Woods, W. Goode, and A. D. Weidemann, “Impacts of underwater turbulence on acoustical and optical signals and their linkage,” Opt. Express 21, 4367–4375 (2013).
[Crossref]

W. Hou, S. Woods, E. Jarosz, W. Goode, and A. D. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51, 2678–2686 (2012).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Hill, R. J.

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[Crossref]

R. J. Hill, “Optical propagation in turbulent water,” J. Opt. Soc. Am. 68, 1067–1072 (1978).
[Crossref]

Horvath, H.

H. Horvath, “On the applicability of the Koschmieder visibility formula,” Atmos. Environ. 5, 177–184 (1971).
[Crossref]

Hou, W.

Hou, W. L.

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

Howells, I. D.

G. K. Batchelor, I. D. Howells, and A. A. Townsend, “Small-scale variation of convected quantities like temperature in turbulent fluid, 2: the case of large conductivity,” J. Fluid Mech. 5, 134–139 (1959).
[Crossref]

Jacobs, D. C.

L. Washburn, T. F. Duda, and D. C. Jacobs, “Interpreting conductivity microstructure: estimating the temperature variance dissipation rate,” J. Atmos. Ocean. Technol. 13, 1166–1188 (1996).
[Crossref]

Jaffe, J. S.

J. S. Jaffe, “Underwater optical imaging: the past, the present, and the prospects,” IEEE J. Ocean. Eng. 40, 683–700 (2015).
[Crossref]

Jarosz, E.

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

W. Hou, E. Jarosz, S. Woods, W. Goode, and A. D. Weidemann, “Impacts of underwater turbulence on acoustical and optical signals and their linkage,” Opt. Express 21, 4367–4375 (2013).
[Crossref]

W. Hou, S. Woods, E. Jarosz, W. Goode, and A. D. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51, 2678–2686 (2012).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Kanaev, A. V.

Korotkova, O.

N. H. Farwell and O. Korotkova, “Multiple phase-screen simulation of oceanic beam propagation,” Proc. SPIE 9224, 922416 (2014).
[Crossref]

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[Crossref]

Lawrence, R. S.

Matt, S.

A. V. Kanaev, W. Hou, S. R. Restaino, S. Matt, and S. Gladysz, “Restoration of images degraded by underwater turbulence using structure tensor oriented image quality (STOIQ) metric,” Opt. Express 23, 17077–17090 (2015).
[Crossref]

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

Metzger, B.

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Moore, C.

Moum, J. N.

J. D. Nash and J. N. Moum, “Estimating salinity variance dissipation rate from conductivity microstructure measurements,” J. Atmos. Ocean. Tech. 16, 263–274 (1999).
[Crossref]

Nash, J. D.

J. D. Nash and J. N. Moum, “Estimating salinity variance dissipation rate from conductivity microstructure measurements,” J. Atmos. Ocean. Tech. 16, 263–274 (1999).
[Crossref]

Nikishov, V. I.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
[Crossref]

Nikishov, V. V.

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
[Crossref]

Nootz, G.

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

G. Nootz, W. Hou, F. R. Dalgleish, and W. T. Rhodes, “Determination of flow orientation of an optically active turbulent field by means of a single beam,” Opt. Lett. 38, 2185–2187 (2013).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Ochs, G. R.

Ouyang, B.

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

F. R. Dalgleish, A. K. Vuorenkoski, and B. Ouyang, “Extended-range undersea laser imaging: current research status and a glimpse at future technologies,” Mar. Technol. Soc. J. 47, 128–147 (2013).
[Crossref]

Parenti, R. R.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
[Crossref]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005), p. xxiii

Quan, X. H.

Ramos, B.

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Restaino, S. R.

Rhodes, W. T.

Sasiela, R. J.

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
[Crossref]

Segel, M.

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

Sucher, E.

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

Taylor, G. I.

G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London Ser. A 164, 0476–0490 (1938).
[Crossref]

Thorpe, S. A.

S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2005), p. xviii.

Tofsted, D. H.

Townsend, A. A.

G. K. Batchelor, I. D. Howells, and A. A. Townsend, “Small-scale variation of convected quantities like temperature in turbulent fluid, 2: the case of large conductivity,” J. Fluid Mech. 5, 134–139 (1959).
[Crossref]

Vuorenkoski, A.

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Vuorenkoski, A. K.

F. R. Dalgleish, A. K. Vuorenkoski, and B. Ouyang, “Extended-range undersea laser imaging: current research status and a glimpse at future technologies,” Mar. Technol. Soc. J. 47, 128–147 (2013).
[Crossref]

Washburn, L.

L. Washburn, T. F. Duda, and D. C. Jacobs, “Interpreting conductivity microstructure: estimating the temperature variance dissipation rate,” J. Atmos. Ocean. Technol. 13, 1166–1188 (1996).
[Crossref]

Weidemann, A. D.

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

W. Hou, E. Jarosz, S. Woods, W. Goode, and A. D. Weidemann, “Impacts of underwater turbulence on acoustical and optical signals and their linkage,” Opt. Express 21, 4367–4375 (2013).
[Crossref]

W. Hou, S. Woods, E. Jarosz, W. Goode, and A. D. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51, 2678–2686 (2012).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Wijesekera, H. W.

Woods, S.

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

W. Hou, E. Jarosz, S. Woods, W. Goode, and A. D. Weidemann, “Impacts of underwater turbulence on acoustical and optical signals and their linkage,” Opt. Express 21, 4367–4375 (2013).
[Crossref]

W. Hou, S. Woods, E. Jarosz, W. Goode, and A. D. Weidemann, “Optical turbulence on underwater image degradation in natural environments,” Appl. Opt. 51, 2678–2686 (2012).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

Yura, H. T.

Zaneveld, J. R. V.

Appl. Opt. (6)

Atmos. Environ. (1)

H. Horvath, “On the applicability of the Koschmieder visibility formula,” Atmos. Environ. 5, 177–184 (1971).
[Crossref]

IEEE J. Ocean. Eng. (1)

J. S. Jaffe, “Underwater optical imaging: the past, the present, and the prospects,” IEEE J. Ocean. Eng. 40, 683–700 (2015).
[Crossref]

Int. J. Fluid Mech. Res. (1)

V. V. Nikishov and V. I. Nikishov, “Spectrum of turbulent fluctuations of the sea-water refraction index,” Int. J. Fluid Mech. Res. 27, 82–98 (2000).
[Crossref]

J. Atmos. Ocean. Tech. (1)

J. D. Nash and J. N. Moum, “Estimating salinity variance dissipation rate from conductivity microstructure measurements,” J. Atmos. Ocean. Tech. 16, 263–274 (1999).
[Crossref]

J. Atmos. Ocean. Technol. (1)

L. Washburn, T. F. Duda, and D. C. Jacobs, “Interpreting conductivity microstructure: estimating the temperature variance dissipation rate,” J. Atmos. Ocean. Technol. 13, 1166–1188 (1996).
[Crossref]

J. Fluid Mech. (3)

G. K. Batchelor, “Small-scale variation of convected quantities like temperature in turbulent fluid, 1: general discussion and the case of small conductivity,” J. Fluid Mech. 5, 113–133 (1959).
[Crossref]

G. K. Batchelor, I. D. Howells, and A. A. Townsend, “Small-scale variation of convected quantities like temperature in turbulent fluid, 2: the case of large conductivity,” J. Fluid Mech. 5, 134–139 (1959).
[Crossref]

R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
[Crossref]

J. Opt. Soc. Am. (3)

Mar. Technol. Soc. J. (1)

F. R. Dalgleish, A. K. Vuorenkoski, and B. Ouyang, “Extended-range undersea laser imaging: current research status and a glimpse at future technologies,” Mar. Technol. Soc. J. 47, 128–147 (2013).
[Crossref]

Methods Oceanogr. (1)

S. Matt, W. Hou, S. Woods, W. Goode, E. Jarosz, and A. D. Weidemann, “A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean,” Methods Oceanogr. 11, 39–58 (2014).
[Crossref]

Opt. Commun. (1)

N. Farwell and O. Korotkova, “Intensity and coherence properties of light in oceanic turbulence,” Opt. Commun. 285, 872–875 (2012).
[Crossref]

Opt. Eng. (1)

L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Proc. R. Soc. London Ser. A (1)

G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. London Ser. A 164, 0476–0490 (1938).
[Crossref]

Proc. SPIE (4)

S. Gladysz, M. Segel, C. Eisele, R. Barros, and E. Sucher, “Estimation of turbulence strength, anisotropy, outer scale and spectral slope from an LED array,” Proc. SPIE 9614, 961402 (2015).
[Crossref]

W. Hou, E. Jarosz, F. R. Dalgleish, G. Nootz, S. Woods, A. D. Weidemann, W. Goode, A. Vuorenkoski, B. Metzger, and B. Ramos, “Bahamas optical turbulence exercise (BOTEX): preliminary results,” Proc. SPIE 8372, 837206 (2012).
[Crossref]

F. Dalgleish, W. L. Hou, A. Vuorenkoski, G. Nootz, and B. Ouyang, “In situ laser sensing of mixed layer turbulence,” Proc. SPIE 8724, 87240D (2013).
[Crossref]

N. H. Farwell and O. Korotkova, “Multiple phase-screen simulation of oceanic beam propagation,” Proc. SPIE 9224, 922416 (2014).
[Crossref]

Other (3)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005), p. xxiii

S. A. Thorpe, The Turbulent Ocean (Cambridge University, 2005), p. xviii.

F. Rainer, “Find centroid of a monochrome laserspot within a dark background,” https://www.mathworks.com/matlabcentral/fileexchange/6490-find-centroid-of-a-monochrome-laserspot-within-a-dark-background .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Turbulence spectra according to Kolmogorov, Hill, and Nikishov. The pronounced “bump” of the spectral density in the viscous-convective spectral interval for high Prandtl numbers is a feature much less pronounced in atmospheric turbulence ( Pr 1 ).
Fig. 2.
Fig. 2. Deployment of TRUSS. Depicted is the TRUSS onboard the RV Walton Smith during deployment. In (a), the TRUSS is shown with two sections assembled to form an 8.75 m optical path between the optical windows of transmitter and receiver. In (b), the deployment cradle is pivoted 90° just before the TRUSS is lowered to the desired depth. (1) Receiver, (2) transmitter, (3) retention bracket, (4) turnbuckle, (5) deployment cradle, (6) cable from A-frame, (7) chain hoist.
Fig. 3.
Fig. 3. Detailed view of receiver and transmitter in (a) and (b), respectively. Insert in (a) shows the projected light dots as recorded by the camera from the back of the ground glass plate. Figure (c) is a schematic overview of the transmitter and receiver setup. From the left: laser, the two lenses of the beam expander, and the diffractive optics element. The wavy lines indicate the region in the open water through which the light beams are projected before intersecting with the ground glass plate diffuser. A camera records the motion of the projected light dots from the back of the diffuser.
Fig. 4.
Fig. 4. Map with the measurements conducted on July 10–11, 2011 west of New Providence Island. Symbols indicate the location of the various measurements as described in the text and arrows indicate the drift direction during these measurements.
Fig. 5.
Fig. 5. (a) Temperature profile as measured by the VMP for three consecutive casts. Also shown is the temperature profile as measured by the slow temperature probe mounted on the TRUSS. (b) High spatial frequency temperature variation of the detrended profiles in (a). (c) Index of refraction structure constant calculated from the detrended temperature data shown in (b) (dashed lines) and moving average of C n 2 over the length of the TRUSS (8.75 m) (solid lines). (d) TKED as calculated from the shear probes of the VMP for the fast casts. The insert in (a) shows the VMP.
Fig. 6.
Fig. 6. Shown in main panel (a) and (c) is the centroid position along the vertical axis of the CCD as determined by the tracking algorithm. Gray lines indicate the positions of individual dots and red lines the average of all dots tracked at a depth of 70 and 80 m, respectively. Main panels (b) and (d) show the data from (a) and (c) corrected for common dot motion. The inserts in the upper left contain a zoomed-in view of a single dot trace with the data points indicated by circles. Inserts in the upper right show a detailed view of the respective main panels and the lower inserts show the Fourier transform of the single-dot deflection (gray lines) and the average of the single-dot transform (red line).
Fig. 7.
Fig. 7. Histogram of centroid deflection for 55 and 75 m depth in (a) and (b), respectively. The inserts on the right of the figures show the beam deflection after the common motion has been removed as gray lines, and the average beam deflection in red. Left inserts show the histograms on a semi-log scale in order to highlight the deviation from the Gaussian shape in the fringe regions.
Fig. 8.
Fig. 8. Temperature profile (red solid line) as measured by a thermistor mounted on the TRUSS. Green symbols are the standard deviation (std) of the beam center motion in the x and y directions. Black circles show the index of refraction structure constant ( C n 2 ) calculated from the averaged std. The gray area indicates the range of C n 2 as calculated from the temperature microstructure measured by the three VMP casts (green, orange, and black line).
Fig. 9.
Fig. 9. Structure constant from VMP measurement versus C n 2 from TRUSS measurement. The gray dashed line indicates perfect correlation with slope = 1 . The error bars denote min and max C n 2 values as measured by the VMP at the depth of the TRUSS measurements (depth indicated by numbers).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η = ( ν 3 / ϵ ) 1 / 4 .
l B = ( ν D 2 / ϵ ) 1 / 4 .
r c 2 = 2.72 C n 2 L 3 W 0 1 / 3 [ 1 8 9 ( κ 0 2 W 0 2 1 + 0.5 W 0 2 ) ] .
std = 1 / 2 2.78 C n 2 L 3 W 0 1 / 3 .
D n ( Δ r ) = C n 2 Δ r 2 / 3 ,
D n ( Δ r ) = [ n ( r ) n ( r + Δ r ) ] 2 .
D T ( Δ r ) = C T 2 Δ r 2 / 3 ,
D T ( Δ r ) = [ T ( r ) T ( r + Δ r ) ] 2 .
C n 2 = ( d n d T ) 2 C T 2 .
d n d T = n T + n S · S T .

Metrics