Abstract

The delay-line buffer is widely used to solve contention by exploiting the time domain for optical packet switching (OPS) networks. How to optimize the length of the delay-line element to minimize the packet loss is a major challenge in designing delay-line buffers efficiently. In this paper we consider the buffers in asynchronous OPS networks with different incoming traffic patterns. For a specific mean packet length, we first demonstrate that the optimum length value of the delay-line element mainly depends on the incoming traffic load. The dependence of packet loss ratio on the delay-line granularity under different traffic loads and buffer sizes is given by both analytical model and simulation results. An optimum delay granularity is found under each traffic load, and this optimum granularity is independent of the buffer sizes. According to this finding, we designed an adaptive delay-line buffer structure with an input-feedback mechanism, namely an improved multiple-input single-output optical buffer, which could automatically configure the switch fabric and adjust the delay-line granularity according to the incoming traffic load. It is shown that the proposed buffer structure can achieve optimum performance for packet loss rate under different network scenarios.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multiple-input single-output FIFO optical buffers with controllable fractional delay lines

G. Das, Rodney S. Tucker, C. Leckie, and K. Hinton
Opt. Express 16(26) 21849-21864 (2008)

Exact Analysis of Single-Wavelength Optical Buffers With Feedback Markov Fluid Queues

Huseyin Emre Kankaya and Nail Akar
J. Opt. Commun. Netw. 1(6) 530-542 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription