Abstract

Macular edema (ME) is considered as one of the major indications of proliferative diabetic retinopathy and it is commonly caused due to diabetes. ME causes retinal swelling due to the accumulation of protein deposits within subretinal layers. Optical coherence tomography (OCT) imaging provides an early detection of ME by showing the cross-sectional view of macular pathology. Many researchers have worked on automated identification of macular edema from fundus images, but this paper proposes a fully automated method for extracting and analyzing subretinal layers from OCT images using coherent tensors. These subretinal layers are then used to predict ME from candidate images using a support vector machine (SVM) classifier. A total of 71 OCT images of 64 patients are collected locally in which 15 persons have ME and 49 persons are healthy. Our proposed system has an overall accuracy of 97.78% in correctly classifying ME patients and healthy persons. We have also tested our proposed implementation on spectral domain OCT (SD-OCT) images of the Duke dataset consisting of 109 images from 10 patients and it correctly classified all healthy and ME images in the dataset.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription