Abstract

This paper proposes what we believe is a novel simultaneous three-dimensional (3D) displacement measurement technique based on a combination of digital image correlation (DIC) and optical flow (OF). In this method, both the in-plane and out-of-plane displacements can be accurately extracted from only two continuous interferograms. DIC estimates the velocity field between two consecutive frames. According to the optical flow constrained equation, we can then obtain the whole-field out-of-plane displacement map by the estimations of the in-plane displacement components and the local frequency of the original image. The proposed method’s operation is simple compared with other phase demodulation methods. Moreover, the new method works perfectly in areas with dense fringes. To verify its effectiveness, we applied a new algorithm to simulated and experimental interferograms. The results of our simulation and experiment show that the new method can demodulate the out-of-plane component of the deformation-phase from the visible in-plane velocity field without an unwrapping process. Further, the proposed algorithm provides a new approach to measure whole-field 3D displacement and dynamic deformation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of three-dimensional displacement using two-dimensional digital image correlation

Chenggen Quan, Cho Jui Tay, Wei Sun, and Xiaoyuan He
Appl. Opt. 47(4) 583-593 (2008)

Improved digital image correlation for in-plane displacement measurement

Asloob Ahmad Mudassar and Saira Butt
Appl. Opt. 53(5) 960-970 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription