Abstract

Dual injection-locked optoelectronic oscillators (DIL-OEOs) have been introduced as a means to achieve very low-noise microwave oscillations while avoiding the large spurious peaks that occur in the phase noise of the conventional single-loop OEOs. In these systems, two OEOs are inter-injection locked to each other. The OEO with the longer optical fiber delay line is called the master OEO, and the other is called the slave OEO. Here, a frequency domain approach for simulating the phase noise spectrum of each of the OEOs in a DIL-OEO system and based on the conversion matrix approach is presented. The validity of the new approach is verified by comparing its results with previously published data in the literature. In the new approach, first, in each of the master or slave OEOs, the power spectral densities (PSDs) of two white and 1/f noise sources are optimized such that the resulting simulated phase noise of any of the master or slave OEOs in the free-running state matches the measured phase noise of that OEO. After that, the proposed approach is able to simulate the phase noise PSD of both OEOs at the injection-locked state. Because of the short run-time requirements, especially compared to previously proposed time domain approaches, the new approach is suitable for optimizing the power injection ratios (PIRs), and potentially other circuit parameters, in order to achieve good performance regarding the phase noise in each of the OEOs. Through various numerical simulations, the optimum PIRs for achieving good phase noise performance are presented and discussed; they are in agreement with the previously published results. This further verifies the applicability of the new approach. Moreover, some other interesting results regarding the spur levels are also presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spurious mode reduction in dual injection-locked optoelectronic oscillators

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz
Opt. Express 19(7) 5839-5854 (2011)

Frequency domain noise analysis of optoelectronic oscillators considering the nonlinearity of the RF amplifier

Sajad Jahanbakht and S. Esmail Hosseini
J. Opt. Soc. Am. B 33(4) 548-557 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription