Abstract

We attain stable mode-locking of an InGaN laser-diode-pumped Pr3+:YLF laser with a pump power of 2.8 W using a semiconductor saturable absorption mirror. A maximum averaged output power of 65 mW was obtained with a 45-ps pulse width at a pulse repetition rate of 108 MHz. We also attempted Kerr-lens mode-locking by employing an SF57 glass in a cavity as a Kerr medium.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with a semiconductor saturable absorber mirror

Fang-Qin Li, Ke Liu, Lin Han, Nan Zong, Yong Bo, Jing-Yuan Zhang, Qin-Jun Peng, Da-Fu Cui, and Zu-Yan Xu
Opt. Lett. 36(8) 1485-1487 (2011)

Diode-pumped 1988-nm Tm:YAP laser mode-locked by intracavity second-harmonic generation in periodically poled LiNbO3

H. Cheng, X. D. Jiang, X. P. Hu, M. L. Zhong, X. J. Lv, and S. N. Zhu
Opt. Lett. 39(7) 2187-2190 (2014)

High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz
Opt. Lett. 36(24) 4746-4748 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped Praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
    [Crossref]
  2. F. Cornacchia, A. Di Lieto, M. Tonelli, A. Richter, E. Heumann, and G. Huber, “Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals,” Opt. Express 16, 15932–15941 (2008).
    [Crossref]
  3. P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
    [Crossref]
  4. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17, 20227–20232 (2009).
    [Crossref]
  5. J. Nakanishi, Y. Horiuchi, T. Yamada, O. Ishii, M. Yamazaki, M. Yoshida, and Y. Fujimoto, “High-power direct green laser oscillation of 598  mW in Pr3+-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes,” Opt. Lett. 36, 1836–1838 (2011).
    [Crossref]
  6. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
    [Crossref]
  7. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004).
    [Crossref]
  8. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
    [Crossref]
  9. S. V. Savitski, I. M. Ranieri, A. B. Krysa, and S. Calvez, “Passively Q-switched Pr:YLF laser,” in CLEO: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB7.
  10. J. Kojou, R. Abe, R. Kariyama, H. Tanaka, A. Sakurai, Y. Watanabe, and F. Kannari, “InGaN diode pumped actively Q-switched intracavity frequency doubling Pr:LiYF4 261  nm laser,” Appl. Opt. 53, 2030–2036 (2014).
    [Crossref]
  11. H. Tanaka, R. Kariyama, K. Iijima, K. Hirosawa, and F. Kannari, “Saturation of 640-nm absorption in Cr4+:YAG for an InGaN laser diode pumped passively Q-switched Pr3+:YLF laser,” Opt. Express 23, 19382–19395 (2015).
    [Crossref]
  12. D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
    [Crossref]
  13. Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
    [Crossref]
  14. Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).
  15. S. Ruan, B. H. T. Chai, J. M. Sutherland, P. M. W. French, and J. R. Taylor, “Kerr-lens mode-locked visible transitions of a Pr:YLF laser,” Opt. Lett. 20, 1041–1043 (1995).
    [Crossref]
  16. Y. P. Tong, A. V. Shestakov, B. H. T. Chai, J. M. Sutherland, P. M. W. French, and J. R. Taylor, “Self-starting Kerr-lens mode-locked femtosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers,” Opt. Lett. 21, 644–646 (1996).
    [Crossref]
  17. M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39, 6939–6941 (2014).
    [Crossref]
  18. G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16, 1967–1969 (1991).
    [Crossref]
  19. J. Kojou, Y. Watanabe, Y. Kojima, H. Nemoto, and F. Kannari, “Intracavity second-harmonic generation at 320  nm of an actively Q-switched Pr:LiYF4 laser,” Appl. Opt. 51, 1382–1386 (2012).
    [Crossref]
  20. W. Qiao, Z. Xiaojun, W. Yonggang, S. Liqun, and N. Hanben, “A simple method for astigmatic compensation of folded resonator without Brewster window,” Opt. Express 22, 2309–2316 (2014).
    [Crossref]
  21. H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
    [Crossref]
  22. H. Kogelnik and T. Li, “Imaging of optical modes-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
    [Crossref]
  23. S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
    [Crossref]
  24. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
    [Crossref]
  25. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
    [Crossref]
  26. Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
    [Crossref]

2016 (2)

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
[Crossref]

2015 (3)

2014 (4)

2012 (1)

2011 (1)

2009 (1)

2008 (1)

2007 (2)

2004 (1)

1996 (2)

Y. P. Tong, A. V. Shestakov, B. H. T. Chai, J. M. Sutherland, P. M. W. French, and J. R. Taylor, “Self-starting Kerr-lens mode-locked femtosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers,” Opt. Lett. 21, 644–646 (1996).
[Crossref]

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

1995 (2)

S. Ruan, B. H. T. Chai, J. M. Sutherland, P. M. W. French, and J. R. Taylor, “Kerr-lens mode-locked visible transitions of a Pr:YLF laser,” Opt. Lett. 20, 1041–1043 (1995).
[Crossref]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

1991 (1)

1989 (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

1987 (1)

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

1972 (1)

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

1965 (1)

H. Kogelnik and T. Li, “Imaging of optical modes-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[Crossref]

Abe, R.

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Bengoechea, J.

Braun, B.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Cai, Z.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Calvez, S.

S. V. Savitski, I. M. Ranieri, A. B. Krysa, and S. Calvez, “Passively Q-switched Pr:YLF laser,” in CLEO: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB7.

Camy, P.

Chai, B. H. T.

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Chen, N.

Chen, Y.

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Cheng, Y.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

Cornacchia, F.

Di Lieto, A.

Dienes, A.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Diening, A.

Doualan, J. L.

Ferguson, A. I.

French, P. M. W.

Friberg, S.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

Fujimoto, Y.

Gaponenko, M.

Guina, M.

Hanben, N.

Hara, I.

Härkönen, A.

Heuer, A.

Heumann, E.

Hirosawa, K.

Horiuchi, Y.

Huber, G.

Iijima, K.

Ippen, E.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Ishii, O.

Iwasa, N.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Kannari, F.

Kariyama, R.

Kärtner, F. X.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Kasuga, K.

Keller, U.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Kogelnik, H.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

H. Kogelnik and T. Li, “Imaging of optical modes-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[Crossref]

Kojima, Y.

Kojou, J.

Kränkel, C.

Krysa, A. B.

S. V. Savitski, I. M. Ranieri, A. B. Krysa, and S. Calvez, “Passively Q-switched Pr:YLF laser,” in CLEO: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB7.

Kubota, Y.

Leinonen, T.

Li, T.

H. Kogelnik and T. Li, “Imaging of optical modes-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[Crossref]

Liqun, S.

Luo, Z.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Malcolm, G. P. A.

Marzahl, D. T.

Matsushita, T.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Mei, L.

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Metz, P. W.

Moglia, F.

Moncorgé, R.

Müller, S.

Nagahama, S. I.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Nakanishi, J.

Nemoto, H.

Okamoto, H.

Osiac, E.

Ostroumov, V.

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Peng, J.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Qiao, W.

Ranieri, I. M.

S. V. Savitski, I. M. Ranieri, A. B. Krysa, and S. Calvez, “Passively Q-switched Pr:YLF laser,” in CLEO: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB7.

Reichert, F.

Richter, A.

Ruan, S.

Sakurai, A.

Savitski, S. V.

S. V. Savitski, I. M. Ranieri, A. B. Krysa, and S. Calvez, “Passively Q-switched Pr:YLF laser,” in CLEO: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB7.

Seelert, W.

Senoh, M.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Shank, C.

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

Shestakov, A. V.

Smith, P.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

Südmeyer, T.

Sugimoto, Y.

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Sutherland, J. M.

Tanaka, H.

Taylor, J. R.

Tonelli, M.

Tong, Y. P.

Wang, J.

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
[Crossref]

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Wang, S.

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Watanabe, Y.

Weichmann, U.

Weingarten, K. J.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Weng, J.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Wu, D.

Xiaojun, Z.

Xu, B.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

Xu, H.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635  nm Q-switched pulse generation,” Opt. Express 23, 24071–24076 (2015).
[Crossref]

Yamada, T.

Yamazaki, M.

Yang, H.

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

Yonggang, W.

Yoshida, M.

Yu, H.

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
[Crossref]

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Zhang, H.

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
[Crossref]

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Zhang, Y.

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
[Crossref]

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61, 429–437 (1995).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik and T. Li, “Imaging of optical modes-resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[Crossref]

H. Kogelnik, E. Ippen, A. Dienes, and C. Shank, “Astigmatically compensated cavities for CW dye lasers,” IEEE J. Quantum Electron. 8, 373–379 (1972).
[Crossref]

IEEE Photon. J. (1)

Y. Cheng, J. Peng, B. Xu, H. Yang, Z. Luo, H. Xu, Z. Cai, and J. Weng, “Passive Q-switching of a diode-pumped Pr:LiYF4 visible laser using WS2 as saturable absorber,” IEEE Photon. J. 8, 1–6 (2016).

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
[Crossref]

Opt. Express (6)

Opt. Lett. (9)

Y. Zhang, H. Yu, H. Zhang, A. Di Lieto, M. Tonelli, and J. Wang, “Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate,” Opt. Lett. 41, 2692–2695 (2016).
[Crossref]

S. Ruan, B. H. T. Chai, J. M. Sutherland, P. M. W. French, and J. R. Taylor, “Kerr-lens mode-locked visible transitions of a Pr:YLF laser,” Opt. Lett. 20, 1041–1043 (1995).
[Crossref]

Y. P. Tong, A. V. Shestakov, B. H. T. Chai, J. M. Sutherland, P. M. W. French, and J. R. Taylor, “Self-starting Kerr-lens mode-locked femtosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers,” Opt. Lett. 21, 644–646 (1996).
[Crossref]

M. Gaponenko, P. W. Metz, A. Härkönen, A. Heuer, T. Leinonen, M. Guina, T. Südmeyer, G. Huber, and C. Kränkel, “SESAM mode-locked red praseodymium laser,” Opt. Lett. 39, 6939–6941 (2014).
[Crossref]

G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16, 1967–1969 (1991).
[Crossref]

J. Nakanishi, Y. Horiuchi, T. Yamada, O. Ishii, M. Yamazaki, M. Yoshida, and Y. Fujimoto, “High-power direct green laser oscillation of 598  mW in Pr3+-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes,” Opt. Lett. 36, 1836–1838 (2011).
[Crossref]

P. Camy, J. L. Doualan, R. Moncorgé, J. Bengoechea, and U. Weichmann, “Diode-pumped Pr3+:KY3F10 red laser,” Opt. Lett. 32, 1462–1464 (2007).
[Crossref]

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004).
[Crossref]

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39, 3193–3196 (2014).
[Crossref]

Phys. Rev. B (1)

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
[Crossref]

Sci. Rep. (1)

Y. Zhang, S. Wang, H. Yu, H. Zhang, Y. Chen, L. Mei, A. Di Lieto, M. Tonelli, and J. Wang, “Atomic-layer molybdenum sulfide optical modulator for visible coherent light,” Sci. Rep. 5, 11342 (2015).
[Crossref]

Other (1)

S. V. Savitski, I. M. Ranieri, A. B. Krysa, and S. Calvez, “Passively Q-switched Pr:YLF laser,” in CLEO: Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMB7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic view of cavity configuration for a SESAM mode-locked Pr 3 + : YLF laser: polarization beam splitter (PBS); half-wave plate (HWP); dichroic mirror (DM); and output coupler (OC).

Fig. 2.
Fig. 2.

Output power of SESAM mode-locked Pr 3 + : YLF laser as function of absorbed pump power.

Fig. 3.
Fig. 3.

Single pulse trace of SESAM mode-locked Pr 3 + : YLF laser. Inset shows pulse train in microsecond time scale.

Fig. 4.
Fig. 4.

Optical spectrum of a SESAM mode-locked Pr 3 + : YLF laser measured at maximum absorbed pump power of 3.8 W. Spectral resolution was 0.01 nm.

Fig. 5.
Fig. 5.

Schematic view of a Kerr-lens mode-locked Pr 3 + : YLF laser with SF57 glass.

Fig. 6.
Fig. 6.

The change in mode radius normalized to the CW mode radius in the sagittal direction of the end mirror with a SF57 glass. At darker range, larger beam radius change is expected. δ YLF and δ NL express differences from confocal length of two concave mirrors placed on both sides of Pr 3 + : YLF and SF57 glass, respectively. Averaged output power of 20 mW was assumed with a pulse width of 15 ps.

Fig. 7.
Fig. 7.

Change in mode radius normalized to the CW mode radius in the sagittal direction of the end mirror with a fused silica. At darker range, larger beam radius change is expected. δ YLF and δ NL express differences from a confocal length of two concave mirrors placed on both sides of Pr 3 + : YLF and fused silica, respectively. Averaged output power of 20 mW was assumed with a pulse width of 15 ps.

Fig. 8.
Fig. 8.

(a) Output pulse of a Q -switch mode-locked laser in microsecond time scale. Inset shows the Q -switch pulse train in tens of microseconds time scale. (b) Pulse train in tens of nanoseconds time scale measured by a photodiode.

Fig. 9.
Fig. 9.

Output pulse train measured only just after vibrating M6.

Fig. 10.
Fig. 10.

Change in mode radius normalized to the CW mode radius in the sagittal direction of the end mirror when we assume 15-ps pulse width with the following averaged output power: (a) 20 mW (original condition), (b) 40 mW, (c) 60 mW, and (d) 80 mW. Scale of color bar was changed for (b), (c), and (d).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f s = f / cos θ ,
f t = f · cos θ .
1 w 1 , 2 2 = 1 w 1 , 2 2 ( 1 l 1 , 2 f ) + 1 f 2 ( π w 1 , 2 λ ) 2 ,
l 1 , 2 f = ( l 1 , 2 f ) f 2 ( l 1 , 2 f ) 2 + ( π w 1 , 2 2 λ ) 2 ,
1 f Kerr = 4 n 2 P L w 4 .
M slice = [ 1 0 1 f kerr ( w ) 1 ] [ 1 l 0 1 ] = [ 1 l 1 f kerr ( w ) 1 ] .
w cw w pulse w cw ,

Metrics