Abstract

Liquid surface and liquid aerosol as the traditional liquid forms for laser-induced breakdown spectroscopy (LIBS) and inductively coupled plasma (ICP), respectively, have been used to analyze chromium (Cr) and cadmium (Cd) elements using LIBS in a liquid solution. The spectral differences, the effects of laser energy and laser frequency, the accumulated number of laser pulses, gate delay time, and the quantitative analyses for a liquid surface and a liquid aerosol were compared. The results showed that the liquid surface demonstrated a lower plasma threshold, higher optical emission intensity, and higher single-to-noise ratio. Moreover, the relative standard deviations (RSDs) of the intensities of the liquid aerosol are better than those of the liquid surface. Furthermore, the results of the quantitative analyses of Cr I 357.86 nm and Cd I 361.05 nm of the liquid surface are close to those of the liquid aerosol. The limit of detections of Cr and Cd of the liquid surface were 2.764 and 86.869μg/mL, which were close to those of liquid aerosol, 2.847μg/mL of Cr and 97.635μg/mL of Cd. For both the liquid surface and liquid aerosol, the coefficient of determination R2 of the calibration curve for Cr and Cd were above 0.99, and the average RSDs of Cr and Cd of the liquid surface were 0.027 and 0.054, which were similar to the 0.020 of Cr and 0.042 of Cd of the liquid aerosol. These results suggest that both the liquid surface and aerosol have similar detection abilities for water quality monitoring.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Analytical-performance improvement of aqueous solution by chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

Xinyan Yang, Xiangyou Li, Zhifeng Cui, Zhongqi Hao, Yongfeng Lu, Jingchun Huang, Guanxin Yao, and Xiaoli Wang
Appl. Opt. 57(25) 7135-7139 (2018)

Sensitive determinations of Cu, Pb, Cd, and Cr elements in aqueous solutions using chemical replacement combined with surface-enhanced laser-induced breakdown spectroscopy

X. Y. Yang, Z. Q. Hao, C. M. Li, J. M. Li, R. X. Yi, M. Shen, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng
Opt. Express 24(12) 13410-13417 (2016)

Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate

Xu Wen, Qingyu Lin, Guanghui Niu, Qi Shi, and Yixiang Duan
Appl. Opt. 55(24) 6706-6712 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription