Abstract

We present a method designed to efficiently extract optical signals from InGaAs avalanche photodiodes (APDs) operated in gated mode. In particular, our method permits an estimation of the fraction of counts that actually results from the signal being measured, as opposed to being produced by noise mechanisms, specifically by afterpulsing. Our method in principle allows the use of InGaAs APDs at high detection efficiencies, with the full operation bandwidth, either with or without resorting to the application of a dead-time. As we show below, our method can be used in configurations where afterpulsing exceeds the genuine signal by orders of magnitude, even near saturation. The algorithms that we have developed are suitable to be used either in real-time processing of raw detection probabilities or in post-processing applications, after a calibration step has been performed. The algorithms that we propose here can complement technologies designed for the reduction of afterpulsing.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance of InGaAs/InP avalanche photodiodes as gated-mode photon counters

Grégoire Ribordy, Jean-Daniel Gautier, Hugo Zbinden, and Nicolas Gisin
Appl. Opt. 37(12) 2272-2277 (1998)

800 MHz Single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating

N. Namekata, S. Sasamori, and S. Inoue
Opt. Express 14(21) 10043-10049 (2006)

1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode

Naoto Namekata, Shunsuke Adachi, and Shuichiro Inoue
Opt. Express 17(8) 6275-6282 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription