Abstract

Extrapolation of near-surface underwater measurements is the most common method to estimate the water-leaving spectral radiance, Lw(λ) (where λ is the light wavelength in vacuum), and remote-sensing reflectance, Rrs(λ), for validation and vicarious calibration of satellite sensors, as well as for ocean color algorithm development. However, uncertainties in Lw(λ) arising from the extrapolation process have not been investigated in detail with regards to the potential influence of inelastic radiative processes, such as Raman scattering by water molecules and fluorescence by colored dissolved organic matter and chlorophyll-a. Using radiative transfer simulations, we examine high-depth resolution vertical profiles of the upwelling radiance, Lu(λ), and its diffuse attenuation coefficient, KLu(λ), within the top 10 m of the ocean surface layer and assess the uncertainties in extrapolated values of Lw(λ). The inelastic processes generally increase Lu and decrease KLu in the red and near-infrared (NIR) portion of the spectrum. Unlike KLu in the blue and green spectral bands, KLu in the red and NIR is strongly variable within the near-surface layer even in a perfectly homogeneous water column. The assumption of a constant KLu with depth that is typically employed in the extrapolation method can lead to significant errors in the estimate of Lw. These errors approach 100% at 900 nm, and the desired threshold of 5% accuracy or less cannot be achieved at wavelengths greater than 650 nm for underwater radiometric systems that typically take measurements at depths below 1 m. These errors can be reduced by measuring Lu within a much shallower surface layer of tens of centimeters thick or even less at near-infrared wavelengths longer than 800 nm, which suggests a requirement for developing appropriate radiometric instrumentation and deployment strategies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward closure of upwelling radiance in coastal waters

Grace C. Chang, Tommy D. Dickey, Curtis D. Mobley, Emmanuel Boss, and W. Scott Pegau
Appl. Opt. 42(9) 1574-1582 (2003)

Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements

Tristan Harmel, Alexander Gilerson, Alberto Tonizzo, Jacek Chowdhary, Alan Weidemann, Robert Arnone, and Sam Ahmed
Appl. Opt. 51(35) 8324-8340 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.
  2. C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).
    [Crossref]
  3. D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
    [Crossref]
  4. D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
    [Crossref]
  5. W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
    [Crossref]
  6. W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
    [Crossref]
  7. M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42, 1–20 (1997).
    [Crossref]
  8. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19, GB1006 (2005).
    [Crossref]
  9. P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Melin, T. S. Moore, T. J. Smyth, D. Antonie, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
    [Crossref]
  10. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” in SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, eds., Vol. 1 of NASA Technical Memorandum (1992), pp. 1–24.
  11. D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.
  12. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
    [Crossref]
  13. D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
    [Crossref]
  14. M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82, 497–504 (2002).
    [Crossref]
  15. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
    [Crossref]
  16. S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47, 2035–2045 (2008).
    [Crossref]
  17. J. L. Mueller, G. S. Fargion, and C. R. McClain, “Ocean optics protocols for satellite ocean color sensor validation, revision 4: radiometric measurements and data analysis protocols,” in NASA Technical Memorandum (2003).
  18. G. Zibordi, J. F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Tech. 26, 91–106 (2009).
    [Crossref]
  19. S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
    [Crossref]
  20. D. D’Alimonte, E. B. Shybanov, G. Zibordi, and T. Kajiyama, “Regression of in-water radiometric profile data,” Opt. Express 21, 27707–27733 (2013).
    [Crossref]
  21. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
    [Crossref]
  22. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  23. G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004).
    [Crossref]
  24. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
    [Crossref]
  25. D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).
  26. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18, 7521–7527 (2010).
    [Crossref]
  27. H. R. Gordon and X. Xu, “Marine asymptotic daylight field: effects of inelastic processes,” Appl. Opt. 35, 4194–4205 (1996).
    [Crossref]
  28. J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
    [Crossref]
  29. L. Li, D. Stramski, and R. A. Reynolds, “Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations,” Deep Sea Res. Part I 87, 53–69 (2014).
    [Crossref]
  30. A. Morel and B. Gentili, “Radiation transport within oceanic (case 1) water,” J. Geophys. Res. 109, C06008 (2004).
    [Crossref]
  31. S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
    [Crossref]
  32. C. D. Mobley and L. K. Sundman, Hydrolight 5-Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).
  33. J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
    [Crossref]
  34. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640  nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
    [Crossref]
  35. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [Crossref]
  36. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
    [Crossref]
  37. A. P. Vasilkov, J. R. Herman, Z. Ahmad, M. Kahru, and B. G. Mitchell, “Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations,” Appl. Opt. 44, 2863–2869 (2005).
    [Crossref]
  38. A. Morel, “Optical Properties of Pure Water and Pure Sea Water,” N. G. Jerlov and E. Steemann Nielsen, eds., in Optical Aspects of Oceanography (Academic, 1974), pp. 1–24.
  39. H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
    [Crossref]
  40. G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
    [Crossref]
  41. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
    [Crossref]
  42. J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
    [Crossref]
  43. R. A. Desiderio, “Application of the Raman scattering coefficient of water to calculation in marine optics,” Appl. Opt. 39, 1893–1894 (2000).
    [Crossref]
  44. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
    [Crossref]
  45. S. K. Hawes, K. L. Carder, and G. R. Harvey, “Quantum fluorescence efficiencies of fulvic and humic acids: effects on ocean color and fluorometric detection,” in Ocean Optics XI, G. D. Gilbert, ed. (SPIE, 1992), pp. 212–223.
  46. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [Crossref]
  47. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
    [Crossref]
  48. K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
    [Crossref]
  49. M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
    [Crossref]
  50. S. B. Hooker, J. H. Morrow, and A. Matsuoka, “Apparent optical properties of the Canadian Beaufort Sea—Part 2: the 1% and 1 cm perspective in deriving and validating AOP data,” Biogeosciences 10, 4511–4527 (2013).
    [Crossref]
  51. D. Stramski, R. A. Reynolds, N. Gat, G. Scriven, and Z. Wang, “AquaTree: A multi-depth underwater spectroradiometer for validation of remotely-sensed ocean color and estimation of seawater biogeochemical properties,” in NASA Ocean Color Research Team Meeting, Washington, DC, May5–9, 2014 ( http://www.optoknowledge.com/documents/Poster_Aquatree_OCRT2014.pdf ).
  52. A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ. 109, 464–472 (2007).
    [Crossref]
  53. S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245 (2005).
    [Crossref]
  54. S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
    [Crossref]
  55. L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
    [Crossref]
  56. L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
    [Crossref]
  57. D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006).
    [Crossref]
  58. D. Doxaran, E. Devred, and M. Babin, “A 50% increase in the mass of terrestrial particles delivered by the Mackenzie river into the Beaufort sea (Canadian Arctic Ocean) over the last 10  years,” Biogeosciences 12, 3551–3565 (2015).
    [Crossref]
  59. D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
    [Crossref]
  60. K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
    [Crossref]
  61. K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
    [Crossref]
  62. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
    [Crossref]
  63. Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
    [Crossref]
  64. L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
    [Crossref]
  65. L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
    [Crossref]

2015 (2)

D. Doxaran, E. Devred, and M. Babin, “A 50% increase in the mass of terrestrial particles delivered by the Mackenzie river into the Beaufort sea (Canadian Arctic Ocean) over the last 10  years,” Biogeosciences 12, 3551–3565 (2015).
[Crossref]

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

2014 (3)

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
[Crossref]

L. Li, D. Stramski, and R. A. Reynolds, “Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations,” Deep Sea Res. Part I 87, 53–69 (2014).
[Crossref]

2013 (5)

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Melin, T. S. Moore, T. J. Smyth, D. Antonie, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref]

D. D’Alimonte, E. B. Shybanov, G. Zibordi, and T. Kajiyama, “Regression of in-water radiometric profile data,” Opt. Express 21, 27707–27733 (2013).
[Crossref]

S. B. Hooker, J. H. Morrow, and A. Matsuoka, “Apparent optical properties of the Canadian Beaufort Sea—Part 2: the 1% and 1 cm perspective in deriving and validating AOP data,” Biogeosciences 10, 4511–4527 (2013).
[Crossref]

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

2012 (4)

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).
[Crossref]

2011 (2)

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

2010 (1)

2009 (1)

G. Zibordi, J. F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Tech. 26, 91–106 (2009).
[Crossref]

2008 (3)

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47, 2035–2045 (2008).
[Crossref]

2007 (5)

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
[Crossref]

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ. 109, 464–472 (2007).
[Crossref]

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

2006 (2)

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
[Crossref]

2005 (5)

A. P. Vasilkov, J. R. Herman, Z. Ahmad, M. Kahru, and B. G. Mitchell, “Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations,” Appl. Opt. 44, 2863–2869 (2005).
[Crossref]

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19, GB1006 (2005).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245 (2005).
[Crossref]

2004 (2)

G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004).
[Crossref]

A. Morel and B. Gentili, “Radiation transport within oceanic (case 1) water,” J. Geophys. Res. 109, C06008 (2004).
[Crossref]

2002 (5)

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82, 497–504 (2002).
[Crossref]

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
[Crossref]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[Crossref]

2000 (2)

1999 (2)

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[Crossref]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[Crossref]

1998 (4)

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[Crossref]

J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[Crossref]

1997 (4)

F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640  nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[Crossref]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42, 1–20 (1997).
[Crossref]

1996 (1)

1994 (2)

1988 (1)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[Crossref]

Ahmad, Z.

Aiken, J.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Alley, D.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

Antoine, D.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47, 2035–2045 (2008).
[Crossref]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]

Antonie, D.

Arnone, R.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

Arnone, R. A.

Arrigo, K. R.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Babin, M.

D. Doxaran, E. Devred, and M. Babin, “A 50% increase in the mass of terrestrial particles delivered by the Mackenzie river into the Beaufort sea (Canadian Arctic Ocean) over the last 10  years,” Biogeosciences 12, 3551–3565 (2015).
[Crossref]

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Bailey, S. W.

Balch, W. M.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

Barnes, R. A.

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

Bartlett, J. S.

Bécu, G.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

Behrenfeld, M. J.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19, GB1006 (2005).
[Crossref]

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42, 1–20 (1997).
[Crossref]

Bélanger, S.

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

Berthon, J. F.

G. Zibordi, J. F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Tech. 26, 91–106 (2009).
[Crossref]

G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004).
[Crossref]

Berwald, J.

J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[Crossref]

Booth, E. S.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

Boss, E.

Bowler, B. C.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

Brando, V. E.

Brewin, R.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

Bricaud, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Broenkow, W.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Brown, S. W.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Carder, K. L.

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[Crossref]

S. K. Hawes, K. L. Carder, and G. R. Harvey, “Quantum fluorescence efficiencies of fulvic and humic acids: effects on ocean color and fluorometric detection,” in Ocean Optics XI, G. D. Gilbert, ed. (SPIE, 1992), pp. 212–223.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Chavez, F. P.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Cherukuru, N.

Clark, D.

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

Clark, D. K.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Claustre, H.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

Cota, G. F.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Culver, M.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

D’Alimonte, D.

D. D’Alimonte, E. B. Shybanov, G. Zibordi, and T. Kajiyama, “Regression of in-water radiometric profile data,” Opt. Express 21, 27707–27733 (2013).
[Crossref]

G. Zibordi, J. F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Tech. 26, 91–106 (2009).
[Crossref]

G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004).
[Crossref]

d’Andon, O. H. F.

d’Ortenzio, F.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

Del Castillo, C.

K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
[Crossref]

Desiderio, R. A.

Devred, E.

Dominguez-Gomez, J. A.

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

Dowell, M.

Doxaran, D.

D. Doxaran, E. Devred, and M. Babin, “A 50% increase in the mass of terrestrial particles delivered by the Mackenzie river into the Beaufort sea (Canadian Arctic Ocean) over the last 10  years,” Biogeosciences 12, 3551–3565 (2015).
[Crossref]

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006).
[Crossref]

Drapeau, D. T.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

Du, J.

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Du, K.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

Duan, H. T.

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

Ehn, J.

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

Eplee, R. E.

K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
[Crossref]

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” in SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, eds., Vol. 1 of NASA Technical Memorandum (1992), pp. 1–24.

Falkowski, P. G.

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42, 1–20 (1997).
[Crossref]

Fargion, G. S.

J. L. Mueller, G. S. Fargion, and C. R. McClain, “Ocean optics protocols for satellite ocean color sensor validation, revision 4: radiometric measurements and data analysis protocols,” in NASA Technical Memorandum (2003).

Feinholz, M.

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Feinholz, M. E.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

Feldman, G. C.

Flora, S.

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Flora, S. J.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

Forand, J. L.

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[Crossref]

Fournier, G. R.

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[Crossref]

Franz, B.

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).
[Crossref]

Franz, B. A.

K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
[Crossref]

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Melin, T. S. Moore, T. J. Smyth, D. Antonie, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18, 7521–7527 (2010).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47, 2035–2045 (2008).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
[Crossref]

Fry, E. S.

Ge, Y.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

Gentili, B.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

A. Morel and B. Gentili, “Radiation transport within oceanic (case 1) water,” J. Geophys. Res. 109, C06008 (2004).
[Crossref]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]

Gitelson, A. A.

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ. 109, 464–472 (2007).
[Crossref]

Gons, H. J.

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245 (2005).
[Crossref]

Gordon, H. R.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82, 497–504 (2002).
[Crossref]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

H. R. Gordon and X. Xu, “Marine asymptotic daylight field: effects of inelastic processes,” Appl. Opt. 35, 4194–4205 (1996).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[Crossref]

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” in SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, eds., Vol. 1 of NASA Technical Memorandum (1992), pp. 1–24.

Harding, L.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Harvey, G. R.

S. K. Hawes, K. L. Carder, and G. R. Harvey, “Quantum fluorescence efficiencies of fulvic and humic acids: effects on ocean color and fluorometric detection,” in Ocean Optics XI, G. D. Gilbert, ed. (SPIE, 1992), pp. 212–223.

Hawes, S. K.

S. K. Hawes, K. L. Carder, and G. R. Harvey, “Quantum fluorescence efficiencies of fulvic and humic acids: effects on ocean color and fluorometric detection,” in Ocean Optics XI, G. D. Gilbert, ed. (SPIE, 1992), pp. 212–223.

Herman, J. R.

Hirata, T.

Hladik, C. M.

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ. 109, 464–472 (2007).
[Crossref]

Hooker, S.

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

Hooker, S. B.

S. B. Hooker, J. H. Morrow, and A. Matsuoka, “Apparent optical properties of the Canadian Beaufort Sea—Part 2: the 1% and 1 cm perspective in deriving and validating AOP data,” Biogeosciences 10, 4511–4527 (2013).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47, 2035–2045 (2008).
[Crossref]

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
[Crossref]

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
[Crossref]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” in SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, eds., Vol. 1 of NASA Technical Memorandum (1992), pp. 1–24.

Houlihan, T.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

Hu, C.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).
[Crossref]

Johnson, B. C.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Kaczmarek, S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Kahru, M.

A. P. Vasilkov, J. R. Herman, Z. Ahmad, M. Kahru, and B. G. Mitchell, “Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations,” Appl. Opt. 44, 2863–2869 (2005).
[Crossref]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[Crossref]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Kajiyama, T.

Kiefer, D. A.

J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[Crossref]

Kim, Y. S.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Lavender, S. J.

Lazin, G.

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
[Crossref]

Lee, Z.

Letelier, R.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Lewis, M.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

Lewis, M. R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Li, L.

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

L. Li, D. Stramski, and R. A. Reynolds, “Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations,” Deep Sea Res. Part I 87, 53–69 (2014).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

Li, S.

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Li, Y.

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

Li, Z.

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

Liu, D.

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Loisel, H.

Lyczskowski, E.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

Magnuson, A.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Mangin, A.

Maritorena, S.

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Melin, T. S. Moore, T. J. Smyth, D. Antonie, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
[Crossref]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Matsuoka, A.

S. B. Hooker, J. H. Morrow, and A. Matsuoka, “Apparent optical properties of the Canadian Beaufort Sea—Part 2: the 1% and 1 cm perspective in deriving and validating AOP data,” Biogeosciences 10, 4511–4527 (2013).
[Crossref]

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

McClain, C. R.

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
[Crossref]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” in SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, eds., Vol. 1 of NASA Technical Memorandum (1992), pp. 1–24.

J. L. Mueller, G. S. Fargion, and C. R. McClain, “Ocean optics protocols for satellite ocean color sensor validation, revision 4: radiometric measurements and data analysis protocols,” in NASA Technical Memorandum (2003).

McLean, S.

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
[Crossref]

Melin, F.

Mitchell, B. G.

A. P. Vasilkov, J. R. Herman, Z. Ahmad, M. Kahru, and B. G. Mitchell, “Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations,” Appl. Opt. 44, 2863–2869 (2005).
[Crossref]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[Crossref]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Mobley, C. D.

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[Crossref]

J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[Crossref]

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

C. D. Mobley and L. K. Sundman, Hydrolight 5-Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).

Moore, G. F.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Moore, T. S.

Morel, A.

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
[Crossref]

A. Morel and B. Gentili, “Radiation transport within oceanic (case 1) water,” J. Geophys. Res. 109, C06008 (2004).
[Crossref]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[Crossref]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[Crossref]

A. Morel, “Optical Properties of Pure Water and Pure Sea Water,” N. G. Jerlov and E. Steemann Nielsen, eds., in Optical Aspects of Oceanography (Academic, 1974), pp. 1–24.

Morrow, J. H.

S. B. Hooker, J. H. Morrow, and A. Matsuoka, “Apparent optical properties of the Canadian Beaufort Sea—Part 2: the 1% and 1 cm perspective in deriving and validating AOP data,” Biogeosciences 10, 4511–4527 (2013).
[Crossref]

Mueller, J. L.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

J. L. Mueller, G. S. Fargion, and C. R. McClain, “Ocean optics protocols for satellite ocean color sensor validation, revision 4: radiometric measurements and data analysis protocols,” in NASA Technical Memorandum (2003).

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Muller-Karger, F.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Murphy, M. Y.

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

O’Brien, M. C.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Ondrusek, M.

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

Pena-Martinez, R.

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

Peters, D.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

Peters, S. W. M.

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245 (2005).
[Crossref]

Phinney, D.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Pope, R. M.

Reynolds, R. A.

L. Li, D. Stramski, and R. A. Reynolds, “Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations,” Deep Sea Res. Part I 87, 53–69 (2014).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[Crossref]

Robinson, W.

Röttgers, R.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Ruiz-Verdu, A.

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

Sathyendranath, S.

Schalles, J. F.

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ. 109, 464–472 (2007).
[Crossref]

Sciandra, A.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Scott, A. J.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

Shang, S.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

Shea, D. M.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19, GB1006 (2005).
[Crossref]

Shi, K.

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

Shybanov, E. B.

Siegel, D. A.

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19, GB1006 (2005).
[Crossref]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
[Crossref]

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Simis, S. G. H.

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245 (2005).
[Crossref]

Smyth, T. J.

Sogandares, F. M.

Song, K.

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

Stramska, M.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Stramski, D.

L. Li, D. Stramski, and R. A. Reynolds, “Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations,” Deep Sea Res. Part I 87, 53–69 (2014).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[Crossref]

J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[Crossref]

Strutton, P.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Sundman, L. K.

C. D. Mobley and L. K. Sundman, Hydrolight 5-Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).

Tailliez, D.

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

Tedesco, L. P.

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

Toole, D.

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

Trees, C.

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

Turpie, K. R.

K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
[Crossref]

Twardowski, M. S.

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Uitz, J.

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
[Crossref]

Vasilkov, A. P.

Vodacek, A.

Voss, K. J.

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[Crossref]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

Wang, M.

Wang, Y.

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Wang, Z.

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Werdell, P. J.

Xu, J.

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Xu, X.

Yarbrough, M.

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

Yarbrough, M. A.

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Yuen, M.

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

Zhang, B.

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Zibordi, G.

D. D’Alimonte, E. B. Shybanov, G. Zibordi, and T. Kajiyama, “Regression of in-water radiometric profile data,” Opt. Express 21, 27707–27733 (2013).
[Crossref]

G. Zibordi, J. F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Tech. 26, 91–106 (2009).
[Crossref]

G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004).
[Crossref]

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
[Crossref]

Appl. Opt. (15)

P. J. Werdell, B. A. Franz, S. W. Bailey, G. C. Feldman, E. Boss, V. E. Brando, M. Dowell, T. Hirata, S. J. Lavender, Z. Lee, H. Loisel, S. Maritorena, F. Melin, T. S. Moore, T. J. Smyth, D. Antonie, E. Devred, O. H. F. d’Andon, and A. Mangin, “Generalized ocean color inversion model for retrieving marine inherent optical properties,” Appl. Opt. 52, 2019–2037 (2013).
[Crossref]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007).
[Crossref]

S. W. Bailey, S. B. Hooker, D. Antoine, B. A. Franz, and P. J. Werdell, “Sources and assumptions for the vicarious calibration of ocean color satellite observations,” Appl. Opt. 47, 2035–2045 (2008).
[Crossref]

C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
[Crossref]

H. R. Gordon and X. Xu, “Marine asymptotic daylight field: effects of inelastic processes,” Appl. Opt. 35, 4194–4205 (1996).
[Crossref]

F. M. Sogandares and E. S. Fry, “Absorption spectrum (340–640  nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[Crossref]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[Crossref]

A. P. Vasilkov, J. R. Herman, Z. Ahmad, M. Kahru, and B. G. Mitchell, “Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations,” Appl. Opt. 44, 2863–2869 (2005).
[Crossref]

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
[Crossref]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, and A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[Crossref]

R. A. Desiderio, “Application of the Raman scattering coefficient of water to calculation in marine optics,” Appl. Opt. 39, 1893–1894 (2000).
[Crossref]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[Crossref]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39, 3582–3591 (2000).
[Crossref]

D. Doxaran, N. Cherukuru, and S. J. Lavender, “Apparent and inherent optical properties of turbid estuarine waters: measurements, empirical quantification relationships, and modeling,” Appl. Opt. 45, 2310–2324 (2006).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755–5772 (2002).
[Crossref]

Biogeosciences (4)

D. Doxaran, E. Devred, and M. Babin, “A 50% increase in the mass of terrestrial particles delivered by the Mackenzie river into the Beaufort sea (Canadian Arctic Ocean) over the last 10  years,” Biogeosciences 12, 3551–3565 (2015).
[Crossref]

D. Doxaran, J. Ehn, S. Bélanger, A. Matsuoka, S. Hooker, and M. Babin, “Optical characterisation of suspended particles in the Mackenzie river plume (Canadian Arctic ocean) and implications for ocean colour remote sensing,” Biogeosciences 9, 3213–3229 (2012).
[Crossref]

S. B. Hooker, J. H. Morrow, and A. Matsuoka, “Apparent optical properties of the Canadian Beaufort Sea—Part 2: the 1% and 1 cm perspective in deriving and validating AOP data,” Biogeosciences 10, 4511–4527 (2013).
[Crossref]

D. Stramski, R. A. Reynolds, M. Babin, S. Kaczmarek, M. R. Lewis, R. Röttgers, A. Sciandra, M. Stramska, M. S. Twardowski, B. A. Franz, and H. Claustre, “Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans,” Biogeosciences 5, 171–201 (2008).
[Crossref]

Deep Sea Res. Part I (1)

L. Li, D. Stramski, and R. A. Reynolds, “Characterization of the solar light field within the ocean mesopelagic zone based on radiative transfer simulations,” Deep Sea Res. Part I 87, 53–69 (2014).
[Crossref]

Environ. Monit. Assess. (1)

K. Song, L. Li, Z. Wang, D. Liu, B. Zhang, J. Xu, J. Du, L. Li, S. Li, and Y. Wang, “Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources,” Environ. Monit. Assess. 184, 1449–1470 (2012).
[Crossref]

Environ. Res. Lett. (1)

L. Li, L. Li, K. Song, Y. Li, K. Shi, and Z. Li, “An improved analytical algorithm for remote estimation of chlorophyll-a in highly turbid waters,” Environ. Res. Lett. 6, 034037 (2011).
[Crossref]

Global Biogeochem. Cycles (1)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19, GB1006 (2005).
[Crossref]

J. Atmos. Ocean. Tech. (2)

G. Zibordi, J. F. Berthon, and D. D’Alimonte, “An evaluation of radiometric products from fixed-depth and continuous in-water profile data from moderately complex waters,” J. Atmos. Ocean. Tech. 26, 91–106 (2009).
[Crossref]

S. B. Hooker, G. Lazin, G. Zibordi, and S. McLean, “An evaluation of above- and in-water methods for determining water-leaving radiances,” J. Atmos. Ocean. Tech. 19, 486–515 (2002).
[Crossref]

J. Atmos. Ocean. Technol. (1)

G. Zibordi, D. D’Alimonte, and J. F. Berthon, “An evaluation of depth resolution requirements for optical profiling in coastal waters,” J. Atmos. Ocean. Technol. 21, 1059–1073 (2004).
[Crossref]

J. Environ. Inform. (1)

K. Song, L. Li, L. P. Tedesco, H. T. Duan, L. Li, and J. Du, “Remote quantification of total suspended matter through empirical approaches for inland waters,” J. Environ. Inform. 23, 23–36 (2014).
[Crossref]

J. Geophys. Res. (10)

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. 118, 4241–4255 (2013).
[Crossref]

J. Uitz, H. Claustre, A. Morel, and S. B. Hooker, “Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll,” J. Geophys. Res. 111, C08005 (2006).
[Crossref]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10749–10768 (1988).
[Crossref]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 102, 17209–17217 (1997).
[Crossref]

A. Morel and B. Gentili, “Radiation transport within oceanic (case 1) water,” J. Geophys. Res. 109, C06008 (2004).
[Crossref]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).
[Crossref]

D. Antoine, F. d’Ortenzio, S. B. Hooker, G. Bécu, B. Gentili, D. Tailliez, and A. J. Scott, “Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean sea (BOUSSOLE project),” J. Geophys. Res. 113, C07013 (2008).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference,” J. Geophys. Res. 117, C01011 (2012).
[Crossref]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[Crossref]

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. Lyczskowski, E. S. Booth, and D. Alley, “The contribution of coccolithophores to the optical and inorganic carbon budgets during the southern ocean gas exchange experiment: new evidence in support of the “Great Calcite Belt” hypothesis,” J. Geophys. Res. 116, C00F06 (2011).
[Crossref]

Limnol. Oceanogr. (4)

M. J. Behrenfeld and P. G. Falkowski, “Photosynthetic rates derived from satellite-based chlorophyll concentration,” Limnol. Oceanogr. 42, 1–20 (1997).
[Crossref]

J. Berwald, D. Stramski, C. D. Mobley, and D. A. Kiefer, “Effect of Raman scattering on the average cosine and diffuse attenuation coefficient of irradiance in the ocean,” Limnol. Oceanogr. 43, 564–576 (1998).
[Crossref]

S. G. H. Simis, S. W. M. Peters, and H. J. Gons, “Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water,” Limnol. Oceanogr. 50, 237–245 (2005).
[Crossref]

H. Loisel and A. Morel, “Light scattering and chlorophyll concentration in case 1 waters: a reexamination,” Limnol. Oceanogr. 43, 847–858 (1998).
[Crossref]

Opt. Express (2)

Proc. SPIE (5)

D. K. Clark, M. Feinholz, M. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002).

S. W. Brown, S. J. Flora, M. E. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007).
[Crossref]

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[Crossref]

K. R. Turpie, R. E. Eplee, B. A. Franz, and C. Del Castillo, “Calibration uncertainty in ocean color satellite sensors and trends in long-term environmental records,” Proc. SPIE 9111, 911103 (2014).
[Crossref]

M. Yarbrough, M. Feinholz, S. Flora, T. Houlihan, B. C. Johnson, Y. S. Kim, M. Y. Murphy, M. Ondrusek, and D. Clark, “Results in coastal waters with high resolution in situ spectral radiometry: the marine optical system ROV,” Proc. SPIE 6680, 668001 (2007).
[Crossref]

Remote Sens. Environ. (6)

S. G. H. Simis, A. Ruiz-Verdu, J. A. Dominguez-Gomez, R. Pena-Martinez, S. W. M. Peters, and H. J. Gons, “Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass,” Remote Sens. Environ. 106, 414–427 (2007).
[Crossref]

A. A. Gitelson, J. F. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study,” Remote Sens. Environ. 109, 464–472 (2007).
[Crossref]

L. Li, L. Li, K. Song, Y. Li, L. P. Tedesco, K. Shi, and Z. Li, “An inversion model for deriving inherent optical properties of inland waters: Establishment, validation and application,” Remote Sens. Environ. 135, 150–166 (2013).
[Crossref]

L. Li, L. Li, and K. Song, “Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin,” Remote Sens. Environ. 157, 9–23 (2015).
[Crossref]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98, 122–140 (2005).
[Crossref]

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82, 497–504 (2002).
[Crossref]

Sci. Total Environ. (1)

L. Li, L. Li, K. Shi, Z. Li, and K. Song, “A semi-analytical algorithm for remote estimation of phycocyanin in inland waters,” Sci. Total Environ. 435–436, 141–150 (2012).
[Crossref]

Science (1)

D. Stramski, R. A. Reynolds, M. Kahru, and B. G. Mitchell, “Estimation of particulate organic carbon in the ocean from satellite remote sensing,” Science 285, 239–242 (1999).
[Crossref]

Other (9)

J. E. O’Reilly, S. Maritorena, D. A. Siegel, M. C. O’Brien, D. Toole, B. G. Mitchell, M. Kahru, F. P. Chavez, P. Strutton, G. F. Cota, S. B. Hooker, C. R. McClain, K. L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G. F. Moore, J. Aiken, K. R. Arrigo, R. Letelier, and M. Culver, “Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: version 4,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, S. B. Hooker and E. R. Firestone, eds., Vol. 11 of NASA Technical Memorandum (2000), pp. 9–23.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” in SeaWiFS Technical Report Series, S. B. Hooker and E. R. Firestone, eds., Vol. 1 of NASA Technical Memorandum (1992), pp. 1–24.

D. K. Clark, M. A. Yarbrough, M. Feinholz, S. Flora, W. Broenkow, Y. S. Kim, B. C. Johnson, S. W. Brown, M. Yuen, and J. L. Mueller, “MOBY, a radiometric buoy for performance monitoring and vicarious calibration of satellite ocean color sensors: measurement and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds., Vol. VI of NASA Technical Memorandum (2003), pp. 3–34.

J. L. Mueller, G. S. Fargion, and C. R. McClain, “Ocean optics protocols for satellite ocean color sensor validation, revision 4: radiometric measurements and data analysis protocols,” in NASA Technical Memorandum (2003).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

C. D. Mobley and L. K. Sundman, Hydrolight 5-Ecolight 5 Technical Documentation (Sequoia Scientific, 2008).

A. Morel, “Optical Properties of Pure Water and Pure Sea Water,” N. G. Jerlov and E. Steemann Nielsen, eds., in Optical Aspects of Oceanography (Academic, 1974), pp. 1–24.

D. Stramski, R. A. Reynolds, N. Gat, G. Scriven, and Z. Wang, “AquaTree: A multi-depth underwater spectroradiometer for validation of remotely-sensed ocean color and estimation of seawater biogeochemical properties,” in NASA Ocean Color Research Team Meeting, Washington, DC, May5–9, 2014 ( http://www.optoknowledge.com/documents/Poster_Aquatree_OCRT2014.pdf ).

S. K. Hawes, K. L. Carder, and G. R. Harvey, “Quantum fluorescence efficiencies of fulvic and humic acids: effects on ocean color and fluorometric detection,” in Ocean Optics XI, G. D. Gilbert, ed. (SPIE, 1992), pp. 212–223.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Depth profiles of chlorophyll- a concentration, Chl, within the upper 200 m of the water column for the three nearly uniform cases within the top 10 m layer. The value of surface Chl is indicated for each case. The depth of the Chl maximum is 115, 45, and 15 m for the surface Chl values of 0.02, 0.2, and 2    mg m 3 , respectively. All subsequent figures and the results in Tables 2 and 3 represent the simulations based on the nearly uniform cases of Chl within the near-surface ocean depicted in this figure.
Fig. 2.
Fig. 2. Spectra (top panels) at selected depths and vertical profiles within the upper 10 m (bottom panels) at indicated light wavelengths of (a),(d) the absorption coefficient a ( z , λ ) ; (b),(e) the scattering coefficient b ( z , λ ) ; and (c),(f) the backscattering coefficient b b ( z , λ ) for the scenario of nearly uniform depth profile of Chl = 0.2    mg m 3 within the top 10 m layer shown in Fig. 1.
Fig. 3.
Fig. 3. Depth profiles of the upwelling radiance L u at selected wavelengths for different simulation scenarios and a solar zenith angle of 0°. (a) Profiles for pure seawater ocean. (b),(c), and (d) Profiles corresponding to scenarios of surface chlorophyll- a concentration of 0.02, 0.2, and 2    mg m 3 , respectively. For each scenario, the depicted results include simulations with only elastic processes ( E ), simulations which include Raman scattering ( R ), and simulations which include Raman scattering and the fluorescence of both chlorophyll- a and CDOM ( R + F ). The latter simulation is not applicable for the pure seawater scenario.
Fig. 4.
Fig. 4. Example illustrating errors in extrapolated values of spectral upwelling radiance just below the water surface, L u ( z = 0 , λ ) , which are associated with the effects of inelastic radiative processes. The left column illustrates the example simulations of a two-depth system, and the right column is for an example of a profiling system. For light wavelength of 650 nm (a) and (b), the extrapolated values of L u ( z = 0 , λ ) using simulated measurements taken at shallower depths, 1 and 5 m for the two-depth system and 0.3–1 m for the profiling system, are shown as solid diamonds and at deeper depths, 5 and 9 m for two-depth system and 1 to 5 m for profiling system, are shown as solid squares. For light wavelength of 850 nm (c) and (d), the extrapolated values of L u ( z = 0 , λ ) using simulated measurements taken at shallower depths, 0.3 to 1 m for the profiling system, are also shown as solid diamonds, and at deeper depths, 1 and 2 m for the two-depth system and 1–2 m for the profiling system, are shown as solid squares. The true values of L u ( z = 0 , λ ) are shown as solid triangles. The simulated measurements of L u by a two-depth system at indicated depths are shown as open circles in (a) and (c), and the simulated measurements of L u by a profiling system with 0.1 m depth resolution are shown as the open diamonds (red) and squares (green) in (b) and (d). The red and green solid lines are the regression lines for the profiles of L u in the corresponding color using the nonlinear regression approach. The results represent the simulation scenario for the surface Chl of 0.2    mg m 3 , solar zenith angle of 0°, and inclusion of all three inelastic processes.
Fig. 5.
Fig. 5. Spectra of diffuse attenuation coefficient of upwelling radiance, K L u , at selected depths (top panels) and depth profiles of K L u at selected light wavelengths (bottom panels) for simulations with a solar zenith angle of 0°. Panels (a) and (d) represent a pure seawater ocean. Panels (b) and (e) depict results obtained using a scenario of surface Chl = 0.2    mg m 3 , and panels (c) and (f) surface Chl = 2    mg m 3 . The wavelength of 685 nm, near the center location of the chlorophyll- a fluorescence peak, is indicated in (a)–(c) by vertical dotted lines. The depth of 1 m is indicated in (d)–(f) by horizontal dotted lines. The notation of R , F , and E is described in Fig. 3.
Fig. 6.
Fig. 6. Depth profiles of K L u at the indicated light wavelengths for solar zenith angles of 0° (solid lines), 30° (dashed–dotted lines), and 60° (dashed lines). All three inelastic processes were included in these simulations. From left to right, the results depict simulations of a pure seawater ocean, and two scenarios of surface Chl, 0.2 and 2    mg m 3 .
Fig. 7.
Fig. 7. Assessment of errors in the extrapolation of L u ( z = 0 , λ ) by a MOBY-like system for a solar zenith angle of 0° and the three surface Chl scenarios of 0.02    mg m 3 (left column), 0.2    mg m 3 (middle column), and 2    mg m 3 (right column). All three inelastic processes were included in the simulations. (a)–(c) Spectra of the reference K L u at 1 m (solid line) and 5 m (dotted–dashed line) as well as layer-effective K L u calculated from simulated L u at 1 and 5 m (dashed line) and that at 5 and 9 m (dotted line). (d)–(f) Spectra of true L u ( z = 0 , λ ) (solid line), extrapolated L u ( z = 0 , λ ) from L u at 1 m using K L u ( z 1 z 2 , λ ) where z 1 = 1    m and z 2 = 5    m (dashed line), and that from L u at 5 m using K L u ( z 1 z 2 , λ ) where z 1 = 5    m and z 2 = 9    m (dotted line). (g)–(i) Extrapolation errors computed by Eq. (9) for the two extrapolation scenarios in (d)–(f). Negative errors imply underestimation of L u true ( z = 0 , λ ) and positive errors indicate overestimation.
Fig. 8.
Fig. 8. Illustration of the extrapolation error at light wavelengths of 450, 550, 650, 750, and 850 nm resulting from all possible combinations of depth pairs z 1 and z 2 ( z 1 < z 2 ) within the upper 10 m layer of the ocean. Results depict simulations at solar zenith angle of 0° with all three inelastic processes included. Three surface Chl scenarios of 0.02 (top), 0.2 (middle), and 2    mg m 3 (bottom) are shown. The color scale indicates the absolute values of errors in L u ( z = 0 , λ ) as computed by Eq. (9).
Fig. 9.
Fig. 9. Similar to Fig. 8, but for the specific scenario of surface Chl = 0.2    mg m 3 and a light wavelength of 750 nm. The color scale indicates the absolute values of errors in L u ( z = 0 , λ ) caused by extrapolation as computed by Eq. (9). The feasible solution domain for extrapolation error less than or equal to 5% is bounded by the left y -axis, the upper x -axis, and the black solid line. The black points within the dark green shaded area indicate examples of three feasible depth pairs ( z 1 , z 2 ) that achieve extrapolation accuracy better than 5%, and the three additional depth pairs located within the light green shaded area exhibit accuracy better than 2%.
Fig. 10.
Fig. 10. Illustration of the absolute values of error in L u ( z = 0 , λ ) at light wavelengths of 450, 550, 650, 750, and 850 nm when utilizing L u ( z , λ ) at a single depth z within the upper 10 m as the estimate of L u ( z = 0 , λ ) . Results depict simulations at solar zenith angle of 0° with all three inelastic processes included for three surface Chl scenarios of 0.02 (top), 0.2 (middle), and 2    mg m 3 (bottom). The color scale indicates the absolute values of error in percentage computed from the expression in the y-axis label. The error values of 2% and 5% are indicated by the light and dark green dotted lines, respectively.

Tables (3)

Tables Icon

Table 1. Description of Radiative Transfer Simulation Scenarios

Tables Icon

Table 2. Recommended Depth Pairs z 1 and z 2 ( z 2 > z 1 ) That Ensure the Accuracy of Extrapolated Values of L u ( z = 0 , λ ) within 2% or 5% of the True Value a

Tables Icon

Table 3. Maximum Depth z max That Permits an Estimation of L u ( z = 0 , λ ) Within the Listed Error Criteria of 2% and 5% from the Simulated Value of L u ( z , λ ) Taken at a Single Depth z z max

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L w ( λ ) = ( t / n 2 ) L u ( z = 0 , λ ) ,
L u ( z = 0 , λ ) = L u ( z 1 , λ ) exp [ K L u ( z 1 z 2 , λ ) z 1 ] ,
K L u ( z 1 z 2 , λ ) = ln L u ( z 1 , λ ) ln L u ( z 2 , λ ) z 2 z 1 .
a ( z , λ ) = a w ( λ ) + a p ( z , λ ) + a g ( z , λ ) .
a p ( z , λ ) = A ( λ ) [ Chl ( z ) ] E ( λ ) ,
a g ( z , λ ) = a g ( z , 440 ) e S ( λ 440 ) = 0.2 a p ( z , 440 ) e S ( λ 440 ) ,
b ( z , λ ) = b w ( λ ) + b p ( z , λ ) .
c p ( z , λ ) = 0.407 [ Chl ( z ) ] 0.795 ( λ 660 ) v ,
v = 0.5 ( log 10 Chl 0.3 )
ε r = L u extr ( z = 0 , λ ) L u true ( z = 0 , λ ) L u true ( z = 0 , λ ) ,

Metrics