Abstract

The random projections statistical technique has been used to reduce the dimensionality of the radiance data space generated from high spectral resolution infrared observations. The mathematical inversion of the physical radiative transfer equation for geophysical parameters has been solved in this space of reduced dimensionality. The great advantage of using random projections is that they provide an unified treatment of instrument noise and forward model error, which can be comprehensively modeled with a single variance term. The result is a novel retrieval approach, which combines computational efficiency to possibly improved accuracy of the retrieval products. The novel approach has been demonstrated through application to the Infrared Atmospheric Sounding Interferometer. We have found that state-of-the-art spectroscopy and related line-mixing treatment for the ν2 CO2 absorption band, i.e., the fundamental band for temperature retrieval, show an excellent consistency with satellite observations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals

Carmine Serio, Carsten Standfuss, Guido Masiello, Giuliano Liuzzi, Emmanuel Dufour, Bernard Tournier, Rolf Stuhlmann, Stephen Tjemkes, and Paolo Antonelli
Appl. Opt. 54(19) 5924-5936 (2015)

Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers

Umberto Amato, Daniela De Canditiis, and Carmine Serio
Appl. Opt. 37(27) 6537-6543 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription