Abstract

Dual-comb spectroscopy (DCS) has shown unparalleled advantages but at the cost of highly mutual coherence between comb lasers. Here, we investigate spectral degradation induced by laser frequency instabilities and improvement benefited from active laser stabilization. Mathematical models of DCS in the cases of direct radio-frequency (RF) locking and optical phase stabilization were separately established first. Numerical simulations are utilized to study the impact of laser intrinsic stability and the improvement by different locking strategies on spectral performance in the following. Finally, both simulations are proven by corresponding experiments. It shows that an optically phase-stabilized system owns a better immunity of laser frequency fluctuations than a direct RF-stabilized one. Furthermore, the performance improvement by the feedback servos is also more effective in the optically phase-stabilized system. In addition, the simulations could instruct optimal design and system improvement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate frequency referencing for fieldable dual-comb spectroscopy

Gar-Wing Truong, Eleanor M. Waxman, Kevin C. Cossel, Esther Baumann, Andrew Klose, Fabrizio R. Giorgetta, William C. Swann, Nathan R. Newbury, and Ian Coddington
Opt. Express 24(26) 30495-30504 (2016)

Frequency comb metrology with an optical parametric oscillator

K. Balskus, S. Schilt, V. J. Wittwer, P. Brochard, T. Ploetzing, N. Jornod, R. A. McCracken, Z. Zhang, A. Bartels, D.T. Reid, and T. Südmeyer
Opt. Express 24(8) 8370-8381 (2016)

Cross-influence between the two servo loops of a fully stabilized Er:fiber optical frequency comb

Vladimir Dolgovskiy, Nikola Bucalovic, Pierre Thomann, Christian Schori, Gianni Di Domenico, and Stéphane Schilt
J. Opt. Soc. Am. B 29(10) 2944-2957 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription