$c$
 Speed of light 
$3.0\times {10}^{10}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{cm}/\mathrm{s}$

$h$
 Planck’s constant 
$6.626\times {10}^{34}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{Js}$

${\lambda}_{\omega}$
 Wavelength of fundamental wave 
$640\times {10}^{7}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{cm}$

${\lambda}_{2\omega}$
 Wavelength of secondharmonic wave 
$320\times {10}^{7}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{cm}$

${\nu}_{\omega}$
 Frequency of fundamental wave  468 THz 
${\nu}_{2\omega}$
 Frequency of second harmonic wave  936 THz 
${l}_{c}$
 Cavity length  14.0 cm 
${l}_{g}$
 Length of
${\mathrm{Pr}}^{3+}\text{:}\mathrm{YLF}$
 0.50 cm 
${l}_{\mathrm{sa}}$
 Length of
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$
 0.24 cm 
${l}_{\mathrm{NL}}$
 Length of LBO (roundtrip)  1.60 cm 
${\sigma}_{\mathrm{st}}$
 Stimulated emission cross section of
${\mathrm{Pr}}^{3+}\text{:}\mathrm{YLF}$
at 640 nm 
$2.2\times {10}^{19}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{2}$

${\sigma}_{\mathrm{gs}}$
 Groundstate absorption cross section of
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$

$1.75\times {10}^{17}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{2}$

${\sigma}_{\mathrm{es}}$
 Excitedstate absorption cross section of
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$

$0.95\times {10}^{17}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{2}$

${\tau}_{f}$
 Fluorescence lifetime of
${\mathrm{Pr}}^{3+}\text{:}\mathrm{YLF}$
 38 μs 
${\tau}_{1}$
 Lifetime of first excitedstate of
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$
 26 ns 
${\tau}_{2}$
 Lifetime of second excitedstate of
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$
 5.6 μs 
$\gamma $
 Transition ratio to first excitedstate of
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$
 0.90 
$R$
 Total reflectivity of cavity mirrors for fundamental wave  0.998 
${L}_{i}$
 Intracavity loss for fundamental wave  0.06 
${\tau}_{c}$
(
$=2{l}_{c}/\{c({L}_{i}\mathrm{ln}\text{\hspace{0.17em}}R)\}$
)  Cavity lifetime  16.4 ns 
${N}_{\text{tot}}$
 Total population density of active ions in
${\mathrm{Pr}}^{3+}\text{:}\mathrm{YLF}$

$7.0\times {10}^{19}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{3}$

${n}_{\text{tot}}$
 Total population density in
${\mathrm{Cr}}^{4+}$
, which contributes to saturable absorption 
$2.06\times {10}^{16}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{3}$

$S$
 Contribution of spontaneous emission to lasing action 
$2.8\times {10}^{5}$

${\gamma}_{\mathrm{SHG}}$
 Nonlinear conversion coefficient 
$1.85\times {10}^{5}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{W}}^{1}$

${n}_{\mathrm{NL}}$
 Refractive index of LBO  1.60 
${\epsilon}_{0}$
 Permittivity in vacuum 
$8.85\times {10}^{14}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{F}\text{\hspace{0.17em}}{\mathrm{cm}}^{1}$

$K$
 Wavenumber of fundamental wave 
$9.82\times {10}^{4}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{1}$

${d}_{\text{eff}}$
 Effective nonlinear coefficient of LBO at 640 nm 
$6.82\times {10}^{13}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{pm}/\mathrm{V}$

${h}^{\prime}(B,\xi )$
 BoydKleinman factor  0.93 
${A}_{g}$
 Effective mode cross section in
${\mathrm{Pr}}^{3+}\text{:}\mathrm{YLF}$

$3.08\times {10}^{4}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{2}$

${A}_{\mathrm{sa}}$
 Effective mode cross section in
${\mathrm{Cr}}^{4+}\text{:}\mathrm{YAG}$

$1.84\times {10}^{4}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{2}$

${A}_{\mathrm{NL}}$
 Effective mode cross section in LBO 
$1.41\times {10}^{4}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{2}$

$V$
(=
${A}_{g}{l}_{g}$
)  Effective mode volume 
$1.54\times {10}^{4}\text{\hspace{0.17em}\hspace{0.17em}}{\mathrm{cm}}^{3}$

$H$
 Total efficiency (including Stokes, pump, and overlap efficiencies)  0.53 
${P}_{\text{abs}}$
 Absorbed pump power  Variable 