Abstract

Based on the inverse Faraday effect, the light-induced magnetization field distributions are investigated for a 4π tight focusing configuration with azimuthally polarized beams. It is found that a superlong (16λ) magnetization chain, composed of 19 subwavelength (0.44λ) spherical spots with longitudinal magnetization field, can be achieved in the focal volume of the objective. Moreover, the magnetic force on a magnetic particle or particle trains produced by tightly focused azimuthally polarized beams are calculated and exploited for the stable trapping of magnetic particles. These unique focal field distributions may find potential applications in confocal microscopy, atom control, and magneto-optical data storage.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetization shaping generated by tight focusing of azimuthally polarized vortex multi-Gaussian beam

Weichao Yan, Zhongquan Nie, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Appl. Opt. 56(7) 1940-1946 (2017)

Achievement and steering of light-induced sub-wavelength longitudinal magnetization chain

Zhongquan Nie, Weiqiang Ding, Guang Shi, Dongyu Li, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Opt. Express 23(16) 21296-21305 (2015)

Theoretical guideline for generation of an ultralong magnetization needle and a super-long conveyed spherical magnetization chain

Weichao Yan, Zhongquan Nie, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Opt. Express 25(19) 22268-22279 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription