Abstract

Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-stroke convex micromirror actuated by electromagnetic force for optical power control

Md. Mahabub Hossain, Wu Bin, and Seong Ho Kong
Opt. Express 23(22) 28358-28368 (2015)

Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation

Lijun Zhu, Pang-Chen Sun, Dirk-Uwe Bartsch, William R. Freeman, and Yeshaiahu Fainman
Appl. Opt. 38(1) 168-176 (1999)

Membrane-based deformable mirror: intrinsic aberrations and alignment issues

A. Raja Bayanna, Rohan E. Louis, S. Chatterjee, Shibu K. Mathew, and P. Venkatakrishnan
Appl. Opt. 54(7) 1727-1736 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22, 94–106 (2013).
    [Crossref]
  2. B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
    [Crossref]
  3. D. Kang, H. Yoo, P. Jillella, B. E. Bouma, and G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express 2, 1412–1422 (2011).
    [Crossref]
  4. P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
    [Crossref]
  5. S. J. Lukes and D. L. Dickensheets, “Agile scanning using a MEMS focus control mirror in a commercial confocal microscope,” Proc. SPIE 8949, 89490W (2014).
    [Crossref]
  6. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47, 6550–6562 (2008).
    [Crossref]
  7. S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
    [Crossref]
  8. D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).
  9. H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
    [Crossref]
  10. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [Crossref]
  11. J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
    [Crossref]
  12. X. Zhao, Y. Xie, and W. Zhao, “Broadband and wide field of view foveated imaging system in space,” Opt. Eng. 47, 103202 (2008).
    [Crossref]
  13. J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C. H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y. S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects,” Opt. Express 16, 20249–20257 (2008).
    [Crossref]
  14. Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
    [Crossref]
  15. M. Xiaohua and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
    [Crossref]
  16. P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
    [Crossref]
  17. S. Bonora, D. Brida, P. Villoresi, and G. Cerullo, “Ultrabroadband pulse shaping with a push-pull deformable mirror,” Opt. Express 18, 23147–23152 (2010).
    [Crossref]
  18. S. Bonora, U. Bortolozzo, G. Naletto, and S. Residori, “Innovative membrane deformable mirrors,” in Topics in Adaptive Optics, B. Tyson, ed. (InTech, 2012), available from: http://www.intechopen.com/books/topics-in-adaptive-optics/innovative-membrane-deformable-mirrors .
  19. A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
    [Crossref]
  20. X. Cheng, J. Ma, and Q. Hao, “Dynamic focus control of the Blu-ray optical pickup unit,” Proc. SPIE 7100, 71000V (2008).
  21. S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
    [Crossref]
  22. S. Aoki, M. Yamada, and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Jpn. J. Appl. Phys. 48, 03A003 (2009).
  23. S. J. Lukes and D. L. Dickensheets, “MEMS focus control and spherical aberration correction for multilayer optical discs,” Proc. SPIE 8252, 82520L (2012).
    [Crossref]
  24. R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18, 17059–17065 (2010).
    [Crossref]
  25. M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical data storage, and micromachining,” Proc. SPIE 6306, 63060A (2006).
    [Crossref]
  26. Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
    [Crossref]
  27. S. J. Lukes and D. L. Dickensheets, “SU-8 focus control mirrors released by XeF2 dry etch,” Proc. SPIE 7930, 793006 (2011).
    [Crossref]
  28. U. A. Korde, “Large-displacement closed-loop control of variable area electrostatic actuation for membrane reflectors,” J. Intell. Mater. Syst. Struct. 20, 697–721 (2009).
    [Crossref]
  29. M.-J. Lin and K.-W. Wu, “Design and fabrication of an electrostatically actuated microdeformable focusing mirror,” J. Micro/Nanolithogr. MEMS MOEMS 10, 011504 (2011).
    [Crossref]
  30. H.-C. Wei and G.-D. J. Su, “A low voltage deformable mirror using ionic-polymer metal composite,” Proc. SPIE 7788, 77880C (2010).
    [Crossref]
  31. S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
    [Crossref]
  32. P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
    [Crossref]
  33. M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
    [Crossref]
  34. B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” in IEEE International Conference on MEMS (2005), pp. 227–230.
  35. P. H. Cu-Nguyen, A. Seifert, and H. Zappe, “Tunable hyperchromatic microlens array for compact 2D spectrometry,” in Microoptics Conference (IEEE, 2015).
  36. H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens fabrication using liquid filling technique,” Microsyst. Technol. 14, 1067–1072 (2008).
    [Crossref]
  37. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
    [Crossref]
  38. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
    [Crossref]
  39. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
    [Crossref]
  40. P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
    [Crossref]
  41. P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23, 21264–21278 (2015).
    [Crossref]
  42. T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
    [Crossref]
  43. D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).
  44. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
    [Crossref]
  45. M. Loktev, D. W. De Lima Monteiro, and G. Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Commun. 192, 91–99 (2001).
    [Crossref]
  46. P. Himiner and D. Dickensheets, “High speed, large deflection deformable mirrors for focus and spherical aberration control,” in IEEE/LEOS International Conference on Optical MEMs (2002), pp. 193–194.
  47. D. L. Dickensheets, P. V. Ashcraft, and P. A. Himmer, “Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments,” Proc. SPIE 3878, 48–57 (1999).
    [Crossref]
  48. C. Friese, M. Wissmann, and H. Zappe, “Polymer-based membrane mirrors for micro-optical sensors,” in Proceedings of IEEE Sensors 1 (2003), pp. 667–672.
  49. K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
    [Crossref]
  50. S. J. Lukes, “Imaging performance of elliptical-boundary varifocal mirrors in active optical systems,” Ph.D. dissertation (Montana State University, 2015).
  51. M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65, 107–115 (1998).
    [Crossref]

2015 (1)

2014 (1)

S. J. Lukes and D. L. Dickensheets, “Agile scanning using a MEMS focus control mirror in a commercial confocal microscope,” Proc. SPIE 8949, 89490W (2014).
[Crossref]

2013 (2)

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22, 94–106 (2013).
[Crossref]

M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
[Crossref]

2012 (4)

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “MEMS focus control and spherical aberration correction for multilayer optical discs,” Proc. SPIE 8252, 82520L (2012).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
[Crossref]

K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
[Crossref]

2011 (5)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 focus control mirrors released by XeF2 dry etch,” Proc. SPIE 7930, 793006 (2011).
[Crossref]

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[Crossref]

M.-J. Lin and K.-W. Wu, “Design and fabrication of an electrostatically actuated microdeformable focusing mirror,” J. Micro/Nanolithogr. MEMS MOEMS 10, 011504 (2011).
[Crossref]

D. Kang, H. Yoo, P. Jillella, B. E. Bouma, and G. J. Tearney, “Comprehensive volumetric confocal microscopy with adaptive focusing,” Biomed. Opt. Express 2, 1412–1422 (2011).
[Crossref]

2010 (5)

2009 (5)

U. A. Korde, “Large-displacement closed-loop control of variable area electrostatic actuation for membrane reflectors,” J. Intell. Mater. Syst. Struct. 20, 697–721 (2009).
[Crossref]

S. Aoki, M. Yamada, and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Jpn. J. Appl. Phys. 48, 03A003 (2009).

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
[Crossref]

2008 (5)

X. Zhao, Y. Xie, and W. Zhao, “Broadband and wide field of view foveated imaging system in space,” Opt. Eng. 47, 103202 (2008).
[Crossref]

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C. H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y. S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects,” Opt. Express 16, 20249–20257 (2008).
[Crossref]

X. Cheng, J. Ma, and Q. Hao, “Dynamic focus control of the Blu-ray optical pickup unit,” Proc. SPIE 7100, 71000V (2008).

N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47, 6550–6562 (2008).
[Crossref]

H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens fabrication using liquid filling technique,” Microsyst. Technol. 14, 1067–1072 (2008).
[Crossref]

2007 (3)

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[Crossref]

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[Crossref]

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

2006 (3)

M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical data storage, and micromachining,” Proc. SPIE 6306, 63060A (2006).
[Crossref]

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

2005 (3)

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
[Crossref]

2004 (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

2003 (1)

M. Xiaohua and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

2002 (1)

Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
[Crossref]

2001 (1)

M. Loktev, D. W. De Lima Monteiro, and G. Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Commun. 192, 91–99 (2001).
[Crossref]

1999 (1)

D. L. Dickensheets, P. V. Ashcraft, and P. A. Himmer, “Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments,” Proc. SPIE 3878, 48–57 (1999).
[Crossref]

1998 (1)

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65, 107–115 (1998).
[Crossref]

Andrews, J. R.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

Aoki, S.

S. Aoki, M. Yamada, and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Jpn. J. Appl. Phys. 48, 03A003 (2009).

Ashcraft, P. V.

D. L. Dickensheets, P. V. Ashcraft, and P. A. Himmer, “Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments,” Proc. SPIE 3878, 48–57 (1999).
[Crossref]

Ataman, Ç.

Bagwell, B. E.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

Baker, J. T.

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

Beck, R. J.

Berge, B.

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” in IEEE International Conference on MEMS (2005), pp. 227–230.

Bergman, K.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Bifano, T.

Bonacina, L.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

Bonadeo, N. H.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Bonora, S.

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref]

S. Bonora, D. Brida, P. Villoresi, and G. Cerullo, “Ultrabroadband pulse shaping with a push-pull deformable mirror,” Opt. Express 18, 23147–23152 (2010).
[Crossref]

S. Bonora, U. Bortolozzo, G. Naletto, and S. Residori, “Innovative membrane deformable mirrors,” in Topics in Adaptive Optics, B. Tyson, ed. (InTech, 2012), available from: http://www.intechopen.com/books/topics-in-adaptive-optics/innovative-membrane-deformable-mirrors .

Booth, M. J.

M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical data storage, and micromachining,” Proc. SPIE 6306, 63060A (2006).
[Crossref]

Bortolozzo, U.

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref]

S. Bonora, U. Bortolozzo, G. Naletto, and S. Residori, “Innovative membrane deformable mirrors,” in Topics in Adaptive Optics, B. Tyson, ed. (InTech, 2012), available from: http://www.intechopen.com/books/topics-in-adaptive-optics/innovative-membrane-deformable-mirrors .

Bouma, B. E.

Bradu, A.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[Crossref]

Brener, I.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Brida, D.

Campbell, K.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Cerullo, G.

Chateau, N.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[Crossref]

Chattergoon, K. N.

M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
[Crossref]

Chau, T.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Chen, T.-Y.

Cheng, M.-C.

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Cheng, X.

X. Cheng, J. Ma, and Q. Hao, “Dynamic focus control of the Blu-ray optical pickup unit,” Proc. SPIE 7100, 71000V (2008).

Cheng, Y.-C.

Chien, Y.-H.

Chou, M.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Chu, P. B.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Coburn, D.

Cu-Nguyen, P. H.

P. H. Cu-Nguyen, A. Seifert, and H. Zappe, “Tunable hyperchromatic microlens array for compact 2D spectrometry,” in Microoptics Conference (IEEE, 2015).

Dadap, J. I.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Dadras, M.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Dainty, C.

Dalimier, E.

Daly, E.

Dandliker, R.

Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
[Crossref]

De Lima Monteiro, D. W.

M. Loktev, D. W. De Lima Monteiro, and G. Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Commun. 192, 91–99 (2001).
[Crossref]

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Devaney, N.

Dickensheets, D.

P. Himiner and D. Dickensheets, “High speed, large deflection deformable mirrors for focus and spherical aberration control,” in IEEE/LEOS International Conference on Optical MEMs (2002), pp. 193–194.

Dickensheets, D. L.

S. J. Lukes and D. L. Dickensheets, “Agile scanning using a MEMS focus control mirror in a commercial confocal microscope,” Proc. SPIE 8949, 89490W (2014).
[Crossref]

M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22, 94–106 (2013).
[Crossref]

K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “MEMS focus control and spherical aberration correction for multilayer optical discs,” Proc. SPIE 8252, 82520L (2012).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 focus control mirrors released by XeF2 dry etch,” Proc. SPIE 7930, 793006 (2011).
[Crossref]

B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
[Crossref]

D. L. Dickensheets, P. V. Ashcraft, and P. A. Himmer, “Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments,” Proc. SPIE 3878, 48–57 (1999).
[Crossref]

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Divoux, C.

S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
[Crossref]

Doran, R. A.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Dubois, P.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Dugundji, J.

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65, 107–115 (1998).
[Crossref]

Extermann, J.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

Fanget, S.

S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
[Crossref]

Farrell, T.

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Friese, C.

C. Friese, M. Wissmann, and H. Zappe, “Polymer-based membrane mirrors for micro-optical sensors,” in Proceedings of IEEE Sensors 1 (2003), pp. 667–672.

Garipov, G. K.

Gibson, R.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Goldstein, E. L.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Gonte, F.

Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
[Crossref]

Groisman, A.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Hand, D. P.

Hao, Q.

X. Cheng, J. Ma, and Q. Hao, “Dynamic focus control of the Blu-ray optical pickup unit,” Proc. SPIE 7100, 71000V (2008).

Harel, R.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Herzig, H.-P.

Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
[Crossref]

Himiner, P.

P. Himiner and D. Dickensheets, “High speed, large deflection deformable mirrors for focus and spherical aberration control,” in IEEE/LEOS International Conference on Optical MEMs (2002), pp. 193–194.

Himmer, P. A.

D. L. Dickensheets, P. V. Ashcraft, and P. A. Himmer, “Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments,” Proc. SPIE 3878, 48–57 (1999).
[Crossref]

Hoffman, S.

Hsieh, H.-T.

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[Crossref]

H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
[Crossref]

Hsu, W.-Y.

Huang, Y.

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Hugon, X.

S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
[Crossref]

Jeon, J. A.

Jhiang, S. M.

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Jillella, P.

Johnson, J. J.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Kam, Z.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Kang, D.

Kaylor, B.

B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
[Crossref]

Kaylor, B. M.

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Khrenov, B. A.

Kim, J. E.

Kim, M.

Kim, T. N.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Kim, Y. K.

Kleinfeld, D.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Korde, U. A.

U. A. Korde, “Large-displacement closed-loop control of variable area electrostatic actuation for membrane reflectors,” J. Intell. Mater. Syst. Struct. 20, 697–721 (2009).
[Crossref]

Koster, S.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Kuo, G. S.

M. Xiaohua and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

Labeye, P. R.

S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
[Crossref]

Laurent, F.

Lee, C. D.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Lee, C. H.

Lee, J.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[Crossref]

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[Crossref]

Lin, L. Y.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Lin, M.-H.

Lin, M.-J.

M.-J. Lin and K.-W. Wu, “Design and fabrication of an electrostatically actuated microdeformable focusing mirror,” J. Micro/Nanolithogr. MEMS MOEMS 10, 011504 (2011).
[Crossref]

Lin, P.-Y.

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[Crossref]

Loktev, M.

M. Loktev, D. W. De Lima Monteiro, and G. Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Commun. 192, 91–99 (2001).
[Crossref]

Lu, Y.

Lukes, S. J.

S. J. Lukes and D. L. Dickensheets, “Agile scanning using a MEMS focus control mirror in a commercial confocal microscope,” Proc. SPIE 8949, 89490W (2014).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22, 94–106 (2013).
[Crossref]

K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “MEMS focus control and spherical aberration correction for multilayer optical discs,” Proc. SPIE 8252, 82520L (2012).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 focus control mirrors released by XeF2 dry etch,” Proc. SPIE 7930, 793006 (2011).
[Crossref]

B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
[Crossref]

S. J. Lukes, “Imaging performance of elliptical-boundary varifocal mirrors in active optical systems,” Ph.D. dissertation (Montana State University, 2015).

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Lutzenberger, B. J.

B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
[Crossref]

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Ma, J.

X. Cheng, J. Ma, and Q. Hao, “Dynamic focus control of the Blu-ray optical pickup unit,” Proc. SPIE 7100, 71000V (2008).

Mackey, D.

Mackey, R.

MacPherson, W. N.

Martinez, T.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

Menq, C.-H.

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Migliori, B.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Mikhaïlov, S.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Moghimi, M. J.

M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
[Crossref]

K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
[Crossref]

B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
[Crossref]

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Moore, J.

Na, G. W.

Naletto, G.

S. Bonora, U. Bortolozzo, G. Naletto, and S. Residori, “Innovative membrane deformable mirrors,” in Topics in Adaptive Optics, B. Tyson, ed. (InTech, 2012), available from: http://www.intechopen.com/books/topics-in-adaptive-optics/innovative-membrane-deformable-mirrors .

Nam, S.

Oliver, K. W.

K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
[Crossref]

Park, I. H.

Park, J. H.

Park, S.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Park, Y. S.

Parry, J. P.

Paxman, R.

Payne, D. M.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

Peale, D. R.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Peter, Y. A.

Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
[Crossref]

Peterson, G. L.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

Podoleanu, A. G.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[Crossref]

Pu, C.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Residori, S.

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref]

S. Bonora, U. Bortolozzo, G. Naletto, and S. Residori, “Innovative membrane deformable mirrors,” in Topics in Adaptive Optics, B. Tyson, ed. (InTech, 2012), available from: http://www.intechopen.com/books/topics-in-adaptive-optics/innovative-membrane-deformable-mirrors .

Restaino, S. R.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

Romeo, R.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

Rondi, A.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

Rooij, N.-F. D.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Roos, P. A.

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Rosset, S.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Schoessler, J.

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

Schwertner, M.

M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical data storage, and micromachining,” Proc. SPIE 6306, 63060A (2006).
[Crossref]

Seifert, A.

P. H. Cu-Nguyen, A. Seifert, and H. Zappe, “Tunable hyperchromatic microlens array for compact 2D spectrometry,” in Microoptics Conference (IEEE, 2015).

Shea, H.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Shephard, J. D.

Sheplak, M.

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65, 107–115 (1998).
[Crossref]

Stauffer, J.

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Stockbridge, C.

Su, G.-D. J.

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[Crossref]

H.-C. Wei and G.-D. J. Su, “A low voltage deformable mirror using ionic-polymer metal composite,” Proc. SPIE 7788, 77880C (2010).
[Crossref]

H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
[Crossref]

J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
[Crossref]

Sweatt, W. C.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

Tang, B.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Tearney, G. J.

Tong, D. T. K.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Toussaint, K.

Tsai, M. J.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Tsai, P. S.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Tuohy, S.

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[Crossref]

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Van As, M. A. J.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Vdovin, G.

M. Loktev, D. W. De Lima Monteiro, and G. Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Commun. 192, 91–99 (2001).
[Crossref]

Villoresi, P.

Waddie, A.

Walker, J. A.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Wan, J.

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Wang, J.-L.

Weber, S. M.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

Wei, H.-C.

Weston, N. J.

Wick, D. V.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

Wilcox, C. C.

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

Wilson, C. R.

M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
[Crossref]

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical data storage, and micromachining,” Proc. SPIE 6306, 63060A (2006).
[Crossref]

Wissmann, M.

C. Friese, M. Wissmann, and H. Zappe, “Polymer-based membrane mirrors for micro-optical sensors,” in Proceedings of IEEE Sensors 1 (2003), pp. 667–672.

Wolf, J. P.

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

Wu, K.-W.

M.-J. Lin and K.-W. Wu, “Design and fabrication of an electrostatically actuated microdeformable focusing mirror,” J. Micro/Nanolithogr. MEMS MOEMS 10, 011504 (2011).
[Crossref]

Wu, Q.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Xiaohua, M.

M. Xiaohua and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

Xie, Y.

X. Zhao, Y. Xie, and W. Zhao, “Broadband and wide field of view foveated imaging system in space,” Opt. Eng. 47, 103202 (2008).
[Crossref]

Yamada, M.

S. Aoki, M. Yamada, and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Jpn. J. Appl. Phys. 48, 03A003 (2009).

Yamagami, T.

S. Aoki, M. Yamada, and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Jpn. J. Appl. Phys. 48, 03A003 (2009).

Yang, C.-Y.

H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens fabrication using liquid filling technique,” Microsyst. Technol. 14, 1067–1072 (2008).
[Crossref]

Yang, H.

H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens fabrication using liquid filling technique,” Microsyst. Technol. 14, 1067–1072 (2008).
[Crossref]

Yeh, M.-S.

H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens fabrication using liquid filling technique,” Microsyst. Technol. 14, 1067–1072 (2008).
[Crossref]

Yoo, H.

Zappe, H.

P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23, 21264–21278 (2015).
[Crossref]

C. Friese, M. Wissmann, and H. Zappe, “Polymer-based membrane mirrors for micro-optical sensors,” in Proceedings of IEEE Sensors 1 (2003), pp. 667–672.

P. H. Cu-Nguyen, A. Seifert, and H. Zappe, “Tunable hyperchromatic microlens array for compact 2D spectrometry,” in Microoptics Conference (IEEE, 2015).

Zhang, Z.

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Zhao, P.

Zhao, W.

X. Zhao, Y. Xie, and W. Zhao, “Broadband and wide field of view foveated imaging system in space,” Opt. Eng. 47, 103202 (2008).
[Crossref]

Zhao, X.

X. Zhao, Y. Xie, and W. Zhao, “Broadband and wide field of view foveated imaging system in space,” Opt. Eng. 47, 103202 (2008).
[Crossref]

Zhong, W.

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21, 4152–4158 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Rondi, J. Extermann, L. Bonacina, S. M. Weber, and J. P. Wolf, “Characterization of a MEMS-based pulse-shaping device in the deep ultraviolet,” Appl. Phys. B 96, 757–761 (2009).
[Crossref]

Appl. Phys. Lett. (3)

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[Crossref]

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91, 191102 (2007).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Biomed. Opt. Express (1)

IEEE Commun. Mag. (1)

M. Xiaohua and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag. 41(11), 50–57 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. A. Peter, F. Gonte, H.-P. Herzig, and R. Dandliker, “Micro-optical fiber switch for a large number of interconnects using a deformable mirror,” IEEE Photon. Technol. Lett. 14, 301–303 (2002).
[Crossref]

J. Appl. Mech. (1)

M. Sheplak and J. Dugundji, “Large deflections of clamped circular plates under initial tension and transitions to membrane behavior,” J. Appl. Mech. 65, 107–115 (1998).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

U. A. Korde, “Large-displacement closed-loop control of variable area electrostatic actuation for membrane reflectors,” J. Intell. Mater. Syst. Struct. 20, 697–721 (2009).
[Crossref]

J. Micro/Nanolithogr. MEMS MOEMS (1)

M.-J. Lin and K.-W. Wu, “Design and fabrication of an electrostatically actuated microdeformable focusing mirror,” J. Micro/Nanolithogr. MEMS MOEMS 10, 011504 (2011).
[Crossref]

J. Microelectromech. Syst. (3)

M. J. Moghimi, K. N. Chattergoon, C. R. Wilson, and D. L. Dickensheets, “High speed focus control MEMS mirror with controlled air damping for vital microscopy,” J. Microelectromech. Syst. 22, 938–948 (2013).
[Crossref]

P. B. Chu, I. Brener, C. Pu, S. S. Lee, J. I. Dadap, S. Park, K. Bergman, N. H. Bonadeo, T. Chau, M. Chou, R. A. Doran, R. Gibson, R. Harel, J. J. Johnson, C. D. Lee, D. R. Peale, B. Tang, D. T. K. Tong, M. J. Tsai, Q. Wu, W. Zhong, E. L. Goldstein, L. Y. Lin, and J. A. Walker, “Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch,” J. Microelectromech. Syst. 14, 261–273 (2005).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 2002 surface micromachined deformable membrane mirrors,” J. Microelectromech. Syst. 22, 94–106 (2013).
[Crossref]

J. Opt. (1)

P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,” J. Opt. 13, 055404 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Aoki, M. Yamada, and T. Yamagami, “A novel deformable mirror for spherical aberration compensation,” Jpn. J. Appl. Phys. 48, 03A003 (2009).

Microsyst. Technol. (1)

H. Yang, C.-Y. Yang, and M.-S. Yeh, “Miniaturized variable-focus lens fabrication using liquid filling technique,” Microsyst. Technol. 14, 1067–1072 (2008).
[Crossref]

Opt. Commun. (1)

M. Loktev, D. W. De Lima Monteiro, and G. Vdovin, “Comparison study of the performance of piston, thin plate and membrane mirrors for correction of turbulence-induced phase distortions,” Opt. Commun. 192, 91–99 (2001).
[Crossref]

Opt. Eng. (1)

X. Zhao, Y. Xie, and W. Zhao, “Broadband and wide field of view foveated imaging system in space,” Opt. Eng. 47, 103202 (2008).
[Crossref]

Opt. Express (8)

J. H. Park, G. K. Garipov, J. A. Jeon, B. A. Khrenov, J. E. Kim, M. Kim, Y. K. Kim, C. H. Lee, J. Lee, G. W. Na, S. Nam, I. H. Park, and Y. S. Park, “Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects,” Opt. Express 16, 20249–20257 (2008).
[Crossref]

J.-L. Wang, T.-Y. Chen, Y.-H. Chien, and G.-D. J. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17, 6268–6274 (2009).
[Crossref]

S. Bonora, D. Brida, P. Villoresi, and G. Cerullo, “Ultrabroadband pulse shaping with a push-pull deformable mirror,” Opt. Express 18, 23147–23152 (2010).
[Crossref]

H.-T. Hsieh, H.-C. Wei, M.-H. Lin, W.-Y. Hsu, Y.-C. Cheng, and G.-D. J. Su, “Thin autofocus camera module by a large-stroke micromachined deformable mirror,” Opt. Express 18, 11097–11104 (2010).
[Crossref]

R. J. Beck, J. P. Parry, W. N. MacPherson, A. Waddie, N. J. Weston, J. D. Shephard, and D. P. Hand, “Application of cooled spatial light modulator for high power nanosecond laser micromachining,” Opt. Express 18, 17059–17065 (2010).
[Crossref]

S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
[Crossref]

C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express 20, 15086–15092 (2012).
[Crossref]

P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23, 21264–21278 (2015).
[Crossref]

Opt. Rev. (1)

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12, 255–259 (2005).
[Crossref]

Proc. SPIE (13)

H.-C. Wei and G.-D. J. Su, “A low voltage deformable mirror using ionic-polymer metal composite,” Proc. SPIE 7788, 77880C (2010).
[Crossref]

M. Schwertner, M. J. Booth, and T. Wilson, “Adaptive optics for microscopy, optical data storage, and micromachining,” Proc. SPIE 6306, 63060A (2006).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “SU-8 focus control mirrors released by XeF2 dry etch,” Proc. SPIE 7930, 793006 (2011).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “MEMS focus control and spherical aberration correction for multilayer optical discs,” Proc. SPIE 8252, 82520L (2012).
[Crossref]

X. Cheng, J. Ma, and Q. Hao, “Dynamic focus control of the Blu-ray optical pickup unit,” Proc. SPIE 7100, 71000V (2008).

S. Fanget, P. R. Labeye, C. Divoux, and X. Hugon, “Integrated deformable mirror on silicon for optical data storage,” Proc. SPIE 5721, 159–169 (2005).
[Crossref]

S. Tuohy, A. Bradu, A. G. Podoleanu, and N. Chateau, “Correcting ocular aberrations with a high stroke deformable mirror,” Proc. SPIE 6627, 66271L (2007).
[Crossref]

B. J. Lutzenberger, M. J. Moghimi, S. J. Lukes, B. Kaylor, and D. L. Dickensheets, “MEMS deformable mirrors for focus control in vital microscopy,” Proc. SPIE 7594, 759406 (2010).
[Crossref]

S. J. Lukes and D. L. Dickensheets, “Agile scanning using a MEMS focus control mirror in a commercial confocal microscope,” Proc. SPIE 8949, 89490W (2014).
[Crossref]

T. Martinez, D. V. Wick, D. M. Payne, J. T. Baker, and S. R. Restaino, “Non-mechanical zoom system,” Proc. SPIE 5234, 375–378 (2004).
[Crossref]

D. V. Wick, B. E. Bagwell, W. C. Sweatt, G. L. Peterson, T. Martinez, S. R. Restaino, J. R. Andrews, C. C. Wilcox, D. M. Payne, and R. Romeo, “Active optical zoom for space-based imaging,” Proc. SPIE 6307, 63070A (2006).

D. L. Dickensheets, P. V. Ashcraft, and P. A. Himmer, “Pixel-by-pixel aberration correction for scanned-beam micro-optical instruments,” Proc. SPIE 3878, 48–57 (1999).
[Crossref]

K. W. Oliver, S. J. Lukes, M. J. Moghimi, and D. L. Dickensheets, “Stress engineering for free-standing SU-8 2002 thin film devices,” Proc. SPIE 8248, 82480H (2012).
[Crossref]

Rev. Sci. Instrum. (1)

Y. Huang, J. Wan, M.-C. Cheng, Z. Zhang, S. M. Jhiang, and C.-H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80, 063107 (2009).
[Crossref]

Sens. Actuators A (1)

P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.-F. D. Rooij, and H. Shea, “Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes,” Sens. Actuators A 130–131, 147–154 (2006).
[Crossref]

Other (7)

P. Himiner and D. Dickensheets, “High speed, large deflection deformable mirrors for focus and spherical aberration control,” in IEEE/LEOS International Conference on Optical MEMs (2002), pp. 193–194.

S. J. Lukes, “Imaging performance of elliptical-boundary varifocal mirrors in active optical systems,” Ph.D. dissertation (Montana State University, 2015).

C. Friese, M. Wissmann, and H. Zappe, “Polymer-based membrane mirrors for micro-optical sensors,” in Proceedings of IEEE Sensors 1 (2003), pp. 667–672.

B. Berge, “Liquid lens technology: principle of electrowetting based lenses and applications to imaging,” in IEEE International Conference on MEMS (2005), pp. 227–230.

P. H. Cu-Nguyen, A. Seifert, and H. Zappe, “Tunable hyperchromatic microlens array for compact 2D spectrometry,” in Microoptics Conference (IEEE, 2015).

D. L. Dickensheets, M. J. Moghimi, S. J. Lukes, B. J. Lutzenberger, B. M. Kaylor, J. Schoessler, and P. A. Roos, “A compact F/5 camera lens with MEMS focus control,” in International Conference on Mechanical Engineering (2011).

S. Bonora, U. Bortolozzo, G. Naletto, and S. Residori, “Innovative membrane deformable mirrors,” in Topics in Adaptive Optics, B. Tyson, ed. (InTech, 2012), available from: http://www.intechopen.com/books/topics-in-adaptive-optics/innovative-membrane-deformable-mirrors .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Photograph of a released 4 mm diameter mirror with its four electrodes labeled. The resulting electrostatic force from the applied voltage is shown in the cross-section diagram. (b) Voltages resulting in the parabolic shape of the mirror allow for sharp imaging of infinite conjugate rays, while a non-parabolic shape leads to spherical aberration, where rays focus at different distances along the center axis. The total deflection, δ , represents the mirror sag of the reflective surface.
Fig. 2.
Fig. 2. (a) Cross section of the unreleased mirror. (b) Free-standing membrane mirror after the release etch [5].
Fig. 3.
Fig. 3. Three simulated surface profiles for a 4 mm diameter mirror with parameters corresponding to those of the fabricated devices. The y-axis scale on the left is for the mirror deflection s , plotted as heavy lines in the figure. The light lines show the error between the simulated shape and the best-fit Zernike expansion, plotted using the y-axis scale on the right. Solid curve: [ V 1 V 2 V 3 V 4 ] = [ 220 223 230 241 ]    V , [ z 2 0 z 4 0 z 6 0 z 8 0 ] = [ 2.25 0.00 0.00 0.00 ]    μm . Dashed curve: [ V 1 V 2 V 3 V 4 ] = [ 360 240 120 0 ] V , [ z 2 0 z 4 0 z 6 0 z 8 0 ] = [ 2.25 + 0.68 0.21 + 0.08 ]    μm . Dashed–dotted curve: [ V 1 V 2 V 3 V 4 ] = [ 37 157 277 397 ] V , [ z 2 0 z 4 0 z 6 0 z 8 0 ] = [ 2.25 0.76 + 0.01 + 0.01 ]    μm .
Fig. 4.
Fig. 4. Aggregate plot of Zernike coefficients determined by 324 simulations, illustrating the range of aberration correction addressable as a function of the amount of defocus, z 2 0 . Primary spherical aberration coefficient values z 4 0 are plotted as triangles, secondary spherical z 6 0 as circles, and tertiary spherical z 8 0 as squares.
Fig. 5.
Fig. 5. (a) Interferogram of the 4    mm × 5.66    mm mirror at rest, used to determine surface profile. (b) Corresponding surface profile. The peak-to-valley height variation is 147 nm and the rms surface deviation is 22 nm. Note that the interferometric data for all elliptical devices are first transformed to a circular coordinate system before applying Zernike fits and presenting the measured height profiles.
Fig. 6.
Fig. 6. Mirror sag as a function of voltage for four mirrors tested. The larger mirrors require less voltage for a given mirror sag.
Fig. 7.
Fig. 7. Spherical aberration capability of a circular mirror.
Fig. 8.
Fig. 8. (a) Spherical aberration capability of α 2 = 5 ° mirror with ± 60    V test matrix performed at four deflections, and with additional ranges of voltages applied to determine maximum z 4 0 range. The algorithm was limited to a minimum of 255    V to prevent accidental snapdown. The blue and red solid lines with large markers show z 4 0 and z 6 0 Zernike coefficients with equipotential voltage on the mirror surface, respectively. (b) Composite Zernike spectra from the 827 measurements plotted in (a), showing aberrations from 2nd to 7th order and tertiary spherical.
Fig. 9.
Fig. 9. Spherical aberration capability of 10° and 45° mirrors with ± 60    V test matrix performed at four deflections for each mirror.
Fig. 10.
Fig. 10. (a) Normalized magnitude plot of three different 0° mirrors that were fabricated on the same wafer and under the same conditions. Three to four trials were done for each mirror and the 3 dB magnitude response for each of these trials are included in the top right corner. (b) Phase response for the three different 0° mirrors.
Fig. 11.
Fig. 11. (a) Normalized magnitude plot of the four mirrors designed for various angles of incidence. (b) Phase response for the four mirrors.
Fig. 12.
Fig. 12. MFAM inserted into the optical train of a benchtop representation of a scanning laser microscope.
Fig. 13.
Fig. 13. Spherical aberration Zernike coefficients before training with equipotential voltages across all four electrodes and after training with optimized voltages applied to the MEMS mirror over a 40 μm focus range, Δ z , behind the objective lens. The algorithm was able to correct z 4 0 over most of the focal range of the MEMS mirror.
Fig. 14.
Fig. 14. Knife-edge measurements corresponding to the WFS measurements shown in Fig. 13. Raw data is shown on the bottom. The MEMS mirror begins flat at Δ z = 0    μm and has greater mirror sag as Δ z increases in value. The entire optical system was removed for testing of the knife-edge response of the objective lens only (plotted using the heavy line at the Δ z = 0 position).

Tables (3)

Tables Icon

Table 1. Comparison of the Dimensions of the Reflective Optical Surface and the Free-standing Membrane

Tables Icon

Table 2. Zernike Modes: Orders, Frequencies, Respective Polynomials, and Aberration Type a

Tables Icon

Table 3. Specific Voltages for the Outer Range of z 4 0 Values as Labeled in Fig. 8(a)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T 2 s ( r ) + p ( r ) = ρ 2 s t 2 ,
p ( r ) = ε 0 2 V 2 ( r ) s 0 2 ( 1 s ( r ) s 0 + h s 0 ε r ) 2 [ N / m 2 ] ,
Δ V 2 = B Δ Z ,

Metrics