Abstract

Our work relates to the use of metamaterials engineered to realize a metasurface approaching the exotic properties of an ideal object not observed in nature, a “magnetic mirror.” Previous realizations were based on resonant structures that implied narrow bandwidths and large losses. The working principle of our device is ideally frequency-independent, it does not involve resonances and it does not rely on a specific technology. The performance of our prototype, working at millimeter wavelengths, has never been achieved before and it is superior to any other device reported in the literature, both in the microwave and optical regions. The device inherently has large bandwidth (144%), low losses (<1%), and is almost independent of incidence angle and polarization state, and thus approaches the behavior of an ideal magnetic mirror. Applications of magnetic mirrors range from low-profile antennas, absorbers to optoelectronic devices. Our device can be realized using different technologies to operate in other spectral regions.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Multi-octave metamaterial reflective half-wave plate for millimeter and sub-millimeter wave applications

Giampaolo Pisano, Bruno Maffei, Peter A. R. Ade, Paolo de Bernardis, Peter de Maagt, Brian Ellison, Manju Henry, Ming Wah Ng, Brian Schortt, and Carole Tucker
Appl. Opt. 55(36) 10255-10262 (2016)

Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals

You Zhou, Xin-Tao He, Fu-Li Zhao, and Jian-Wen Dong
Opt. Lett. 41(10) 2209-2212 (2016)

Nanoemitter in the vicinity of an impedance plane

MirFaez Miri, Negar Otrooshi, and Yaser Abdi
J. Opt. Soc. Am. B 30(11) 3027-3034 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Pozar, Microwave Engineering (Wiley, 2011).
  2. D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
    [Crossref]
  3. S. Clavijo, R. E. Diaz, and W. E. M. McKinzie, “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag. 51, 2678–2690 (2003).
    [Crossref]
  4. A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
    [Crossref]
  5. D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
    [Crossref]
  6. M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas Wireless Propag. Lett. 10, 615–618 (2011).
    [Crossref]
  7. C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microwaves Antennas Propag. 1, 255–260 (2007).
    [Crossref]
  8. A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
    [Crossref]
  9. J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
    [Crossref]
  10. A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
    [Crossref]
  11. K. Agarwal, Nasimuddin, and A. Alphones, “Wideband circularly polarized AMC reflector backed aperture antenna,” IEEE Trans. Antennas Propag. 61, 1456–1461 (2013).
    [Crossref]
  12. D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett. 48, 2468–2471 (2006).
    [Crossref]
  13. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58, 1551–1558 (2010).
    [Crossref]
  14. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
    [Crossref]
  15. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
    [Crossref]
  16. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
    [Crossref]
  17. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref]
  18. H. Rostami, Y. Abdi, and E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
    [Crossref]
  19. J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
    [Crossref]
  20. S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
    [Crossref]
  21. M. Esfandyarpour, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
    [Crossref]
  22. N. Marcuvitz, “Four-terminal structures,” in Waveguide Handbook, MIT Radiation Laboratory Series (McGraw-Hill, 1951), pp. 280–289.
  23. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [Crossref]
  24. P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
    [Crossref]
  25. G. Pisano, G. Savini, P. A. R. Ade, and V. Haynes, “A metal-mesh achromatic half-wave plate for use at submillimetre wavelengths,” Appl. Opt. 47, 6251–6256 (2008).
    [Crossref]
  26. G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
    [Crossref]
  27. G. Pisano, M. W. Ng, B. Maffei, and F. Ozturk, “A dielectrically embedded flat mesh lens for millimetre waves applications,” Appl. Opt. 52, 2218–2225 (2013).
    [Crossref]
  28. J. Zhang, P. A. R. Ade, P. Mauskopf, L. Moncelsi, G. Savini, and N. Whitehouse, “New artificial dielectric metamaterial and its application as a THZ anti-reflection coating,” Appl. Opt. 48, 6635–6642 (2009).
    [Crossref]
  29. G. Savini, P. A. R. Ade, and J. Zhang, “A new artificial material approach for flat THz frequency lenses,” Opt. Express 20, 25766–25773 (2012).
    [Crossref]
  30. High frequency structure simulator (HFSS), www.ansys.com .

2014 (2)

2013 (2)

G. Pisano, M. W. Ng, B. Maffei, and F. Ozturk, “A dielectrically embedded flat mesh lens for millimetre waves applications,” Appl. Opt. 52, 2218–2225 (2013).
[Crossref]

K. Agarwal, Nasimuddin, and A. Alphones, “Wideband circularly polarized AMC reflector backed aperture antenna,” IEEE Trans. Antennas Propag. 61, 1456–1461 (2013).
[Crossref]

2012 (6)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
[Crossref]

G. Savini, P. A. R. Ade, and J. Zhang, “A new artificial material approach for flat THz frequency lenses,” Opt. Express 20, 25766–25773 (2012).
[Crossref]

2011 (1)

M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas Wireless Propag. Lett. 10, 615–618 (2011).
[Crossref]

2010 (2)

H. Rostami, Y. Abdi, and E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58, 1551–1558 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (2)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microwaves Antennas Propag. 1, 255–260 (2007).
[Crossref]

2006 (3)

J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
[Crossref]

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett. 48, 2468–2471 (2006).
[Crossref]

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[Crossref]

2005 (3)

A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

2003 (1)

S. Clavijo, R. E. Diaz, and W. E. M. McKinzie, “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag. 51, 2678–2690 (2003).
[Crossref]

1999 (1)

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

Abdi, Y.

H. Rostami, Y. Abdi, and E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

Ade, P. A. R.

Agarwal, K.

K. Agarwal, Nasimuddin, and A. Alphones, “Wideband circularly polarized AMC reflector backed aperture antenna,” IEEE Trans. Antennas Propag. 61, 1456–1461 (2013).
[Crossref]

Alexopolous, N. G.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Alphones, A.

K. Agarwal, Nasimuddin, and A. Alphones, “Wideband circularly polarized AMC reflector backed aperture antenna,” IEEE Trans. Antennas Propag. 61, 1456–1461 (2013).
[Crossref]

Álvarez, Y.

M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas Wireless Propag. Lett. 10, 615–618 (2011).
[Crossref]

Arzi, E.

H. Rostami, Y. Abdi, and E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Bender, D. A.

Brener, I.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microwaves Antennas Propag. 1, 255–260 (2007).
[Crossref]

Broas, R. F. J.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Brocker, D.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

Campione, S.

Capolino, F.

A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Clavijo, S.

S. Clavijo, R. E. Diaz, and W. E. M. McKinzie, “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag. 51, 2678–2690 (2003).
[Crossref]

Clem, P. G.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Costa, F.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58, 1551–1558 (2010).
[Crossref]

de Cos, M. E.

M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas Wireless Propag. Lett. 10, 615–618 (2011).
[Crossref]

De Flaviis, F.

A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

De Luis, J. R.

A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

Diaz, R. E.

S. Clavijo, R. E. Diaz, and W. E. M. McKinzie, “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag. 51, 2678–2690 (2003).
[Crossref]

Erentok, A.

A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

Esfandyarpour, M.

M. Esfandyarpour, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref]

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Fenollosa, R.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Feresidis, A. P.

A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Ginn, J.

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Goussetis, G.

A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Hao, J. Z.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

Haynes, V.

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
[Crossref]

G. Pisano, G. Savini, P. A. R. Ade, and V. Haynes, “A metal-mesh achromatic half-wave plate for use at submillimetre wavelengths,” Appl. Opt. 47, 6251–6256 (2008).
[Crossref]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Ihlefeld, J. F.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Jun, Y. C.

Kern, D. J.

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett. 48, 2468–2471 (2006).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Kim, K. Y.

J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lan, L.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

Lanuzza, L.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Las-Heras, F.

M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas Wireless Propag. Lett. 10, 615–618 (2011).
[Crossref]

Lee, J.-H.

J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
[Crossref]

Lijun, Z.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Liu, S.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Luljak, P. L.

A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

Maffei, B.

G. Pisano, M. W. Ng, B. Maffei, and F. Ozturk, “A dielectrically embedded flat mesh lens for millimetre waves applications,” Appl. Opt. 52, 2218–2225 (2013).
[Crossref]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
[Crossref]

Mahony, T. S.

Manara, G.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58, 1551–1558 (2010).
[Crossref]

Marcuvitz, N.

N. Marcuvitz, “Four-terminal structures,” in Waveguide Handbook, MIT Radiation Laboratory Series (McGraw-Hill, 1951), pp. 280–289.

Mauskopf, P.

Mayer, T. S.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

McKinzie, W. E. M.

S. Clavijo, R. E. Diaz, and W. E. M. McKinzie, “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag. 51, 2678–2690 (2003).
[Crossref]

Meseguer, F.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Moncelsi, L.

Monorchio, A.

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58, 1551–1558 (2010).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Nasimuddin,

K. Agarwal, Nasimuddin, and A. Alphones, “Wideband circularly polarized AMC reflector backed aperture antenna,” IEEE Trans. Antennas Propag. 61, 1456–1461 (2013).
[Crossref]

Ng, M. W.

G. Pisano, M. W. Ng, B. Maffei, and F. Ozturk, “A dielectrically embedded flat mesh lens for millimetre waves applications,” Appl. Opt. 52, 2218–2225 (2013).
[Crossref]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
[Crossref]

Ozturk, F.

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Pisano, G.

G. Pisano, M. W. Ng, B. Maffei, and F. Ozturk, “A dielectrically embedded flat mesh lens for millimetre waves applications,” Appl. Opt. 52, 2218–2225 (2013).
[Crossref]

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
[Crossref]

G. Pisano, G. Savini, P. A. R. Ade, and V. Haynes, “A metal-mesh achromatic half-wave plate for use at submillimetre wavelengths,” Appl. Opt. 47, 6251–6256 (2008).
[Crossref]

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2011).

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Rostami, H.

H. Rostami, Y. Abdi, and E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

Savini, G.

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Seokho, Y.

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

Shi, L.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Sievenpiper, D.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Sinclair, M. B.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Sohn, J. R.

J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
[Crossref]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Tae, H.-S.

J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
[Crossref]

Tucker, C. E.

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[Crossref]

Tuzer, T. U.

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

Vallecchi, A.

A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

Vardaxoglou, J. C.

A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Wang, S. H.

A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Weaver, S. O.

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[Crossref]

Wendt, J. R.

S. Liu, M. B. Sinclair, T. S. Mahony, Y. C. Jun, S. Campione, J. Ginn, D. A. Bender, J. R. Wendt, J. F. Ihlefeld, P. G. Clem, J. B. Wright, and I. Brener, “Optical magnetic mirrors without metals,” Optica 1, 250–256 (2014).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

Werner, D. H.

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett. 48, 2468–2471 (2006).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

Whitehouse, N.

Wilhelm, M. J.

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

Wright, J. B.

Yablonovitch, E.

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

Zhang, J.

Zheludev, N. I.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Ziolkowski, R. W.

A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

Adv. Mater. (1)

L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater. 24, 5934–5938 (2012).
[Crossref]

Appl. Opt. (3)

Carbon (1)

H. Rostami, Y. Abdi, and E. Arzi, “Fabrication of optical magnetic mirrors using bent and mushroom-like carbon nanotubes,” Carbon 48, 3659–3666 (2010).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

M. E. de Cos, Y. Álvarez, and F. Las-Heras, “Novel broadband artificial magnetic conductor with hexagonal unit cell,” IEEE Antennas Wireless Propag. Lett. 10, 615–618 (2011).
[Crossref]

IEEE Trans. Antennas Propag. (7)

A. P. Feresidis, G. Goussetis, S. H. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antennas Propag. 53, 209–215 (2005).
[Crossref]

S. Clavijo, R. E. Diaz, and W. E. M. McKinzie, “Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag. 51, 2678–2690 (2003).
[Crossref]

A. Erentok, P. L. Luljak, and R. W. Ziolkowski, “Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications,” IEEE Trans. Antennas Propag. 53, 160–172 (2005).
[Crossref]

D. J. Kern, D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, “The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces,” IEEE Trans. Antennas Propag. 53, 8–17 (2005).
[Crossref]

A. Vallecchi, J. R. De Luis, F. Capolino, and F. De Flaviis, “Low profile fully planar folded dipole antenna on a high impedance surface,” IEEE Trans. Antennas Propag. 60, 51–62 (2012).
[Crossref]

K. Agarwal, Nasimuddin, and A. Alphones, “Wideband circularly polarized AMC reflector backed aperture antenna,” IEEE Trans. Antennas Propag. 61, 1456–1461 (2013).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antennas Propag. 58, 1551–1558 (2010).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

D. Sievenpiper, Z. Lijun, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).
[Crossref]

IET Microwaves Antennas Propag. (1)

C. R. Brewitt-Taylor, “Limitation on the bandwidth of artificial perfect magnetic conductor surfaces,” IET Microwaves Antennas Propag. 1, 255–260 (2007).
[Crossref]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[Crossref]

J. Opt. A (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A 9, L1–L2 (2007).
[Crossref]

Microw. Opt. Technol. Lett. (1)

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultrathin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett. 48, 2468–2471 (2006).
[Crossref]

Nat. Nanotechnol. (1)

M. Esfandyarpour, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9, 542–547 (2014).
[Crossref]

Opt. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108, 097402 (2012).
[Crossref]

PIER (1)

J. R. Sohn, K. Y. Kim, H.-S. Tae, and J.-H. Lee, “Comparative study on various artificial magnetic conductors for low-profile antenna,” PIER 61, 27–37 (2006).
[Crossref]

Proc. SPIE (1)

P. A. R. Ade, G. Pisano, C. E. Tucker, and S. O. Weaver, “A review of metal mesh filters,” Proc. SPIE 6275, 62750U (2006).
[Crossref]

Prog. Electromagn. Res. M (1)

G. Pisano, M. W. Ng, V. Haynes, and B. Maffei, “A broadband metal-mesh half-wave plate for millimetre wave linear polarisation rotation,” Prog. Electromagn. Res. M 25, 101–114 (2012).
[Crossref]

Sci. Rep. (1)

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Other (4)

J. Z. Hao, Y. Seokho, L. Lan, D. Brocker, D. H. Werner, and T. S. Mayer, “Experimental demonstration of an optical artificial perfect magnetic mirror using dielectric resonators,” in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (2012), pp. 1–2.
[Crossref]

D. M. Pozar, Microwave Engineering (Wiley, 2011).

High frequency structure simulator (HFSS), www.ansys.com .

N. Marcuvitz, “Four-terminal structures,” in Waveguide Handbook, MIT Radiation Laboratory Series (McGraw-Hill, 1951), pp. 280–289.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Reflection of electromagnetic waves on PEC and PMC surfaces. (a) Reflection of an electromagnetic wave on a PEC: E and H field phase shifts. (b) As above but in the case of a PMC. (c) The equivalent transmission line circuit for a PEC surface is a short circuit. It provides out-of-phase reflection coefficient for the electric field. (d) The equivalent transmission line circuit for a PMC surface is a load with infinite impedance. The electric field is reflected without any change in phase.
Fig. 2.
Fig. 2. Classical FSS-based and novel metamaterial-based AMC working principles. (a) Typical FSS-based artificial magnetic conductor design and equivalent TL circuit. (b) AMC based on gradient index materials and dielectric internal reflection: the incoming radiation is gently fed into a medium with steadily increasing refractive index until it is almost completely reflected at the interface with free space. In this case the reflection coefficient is Γ = + 1 . (c) AMC realized with a discrete number of dielectric layers with quarter-wavelength thicknesses. (d) AMC designed using metamaterials. These layers can be realized by embedding metallic mesh grids inside polymers.
Fig. 3.
Fig. 3. AMC applications and prototype details. (a) Different types of application for an AMC. (b) Picture of the AMC prototype: half of it behaves like an embedded AMC, whereas the other half is an embedded PEC. The white material is the lowest index material used in the design. (c) Sketch of a portion of the metamaterial structures. (d) Photographs of the two types of embedded metal grids used in the prototype.
Fig. 4.
Fig. 4. AMC modeled performances. Embedded AMC on-axis phase-shift simulations compared to the typical performance and to the theoretical limit of FSS-based AMCs.
Fig. 5.
Fig. 5. AMC optical test setups. In both the (a) VNA and (b) FTS setups, the prototype was tested in reflection at 45° incidence angle. The device was able to rotate around its optical axis in order to operate in the AMC (null phase shift) or PEC ( π phase shift) modes. In the VNA setup, the change in phase was acquired directly by the receiver head. In the modified Mach–Zehnder FTS setup, the device replaces one of the optical mirrors and the change in phase results in the inversion of the interferogram acquired by the detector.
Fig. 6.
Fig. 6. AMC experimental results. (a) FTS interferograms for the PEC (black) and AMC (red) parts of the device (arbitrary units on both axes). Notice how the AMC interferogram looks out-of-phase compared to the PEC one. (b) and (c) show the VNA and FTS phase-shift measurements against model expectations, respectively for the S and P polarization. The AMC operated at 45° incidence angle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Arg ( FFT PEC ) Arg ( FFT AMC ) .

Metrics