Abstract

This paper offers a simple, practical strategy to implement wavelength modulation spectroscopy (WMS) with a tunable diode laser. It eliminates the need to pre-characterize the laser intensity parameters or make any design changes to a conventional WMS system. Consequently, sensitivity and signal strength remain the same as what can be obtained from a traditional WMS setup at low modulation amplitude. Like previously proposed calibration-free approaches, this new method also yields an absolute absorption line shape function. To recover residual amplitude modulation (RAM) contributions present in the first and second harmonic signals of WMS, we exploited their even or odd symmetric nature. We then used these isolated RAM signals to estimate the absolute line shape function, thus removing the impact of optical intensity fluctuations on measurement. We have also discussed uncertainties and noises associated with the estimated absolute line shape function and the applicability of this new method to detect several gases in the near infrared region. We used measurements of the 1650.96 nm absorption line for 1% and 8% methane concentration in the 60–100 kPa pressure range to validate the efficacy of this new RAM recovery technique and demonstrated a calibration-free system. Because this approach has minimal dependency on diode laser operating conditions, it is more robust and suitable for harsh industrial environments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line

Arup Lal Chakraborty, Keith Ruxton, Walter Johnstone, Michael Lengden, and Kevin Duffin
Opt. Express 17(12) 9602-9607 (2009)

Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments

Gregory B. Rieker, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 48(29) 5546-5560 (2009)

Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

Hejie Li, Gregory B. Rieker, Xiang Liu, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 45(5) 1052-1061 (2006)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription