A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, “Interferometric coherent Fourier
scatterometry: a method for obtaining high sensitivity in the
optical inverse-grating problem,” J.
Opt. 15, 075707 (2013).

V. F. Paz, S. Peterhansel, K. Frenner, and W. Osten, “Solving the inverse grating problem
by white light interference Fourier
scatterometry,” Light Sci. Appl. 1, e36 (2012).

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

B. B. M. Wurm and F. Pilarski, “A new flexible scatterometer for
critical dimensional metrology,” Rev. Sci.
Instrum. 81, 023701 (2010).

[Crossref]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending
the limits of image-based optical metrology,” Appl. Opt. 46, 4248–4257 (2007).

[Crossref]

Q. Kemao, “Two-dimensional windowed Fourier
transform for fringe pattern analysis: principles, applications
and implementation,” Opt. Lasers
Eng. 45, 304–317 (2007).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

H.-T. Huang, W. Kong, and F. L. Terry, “Normal-incidence spectroscopic
ellipsometry for critical dimension monitoring,” Appl. Phys. Lett. 78, 3983 (2001).

[Crossref]

P. Török and T. Wilson, “Rigorous theory for axial resolution
in confocal microscopes,” Opt.
Commun. 137, 127–135 (1997).

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for
diffraction gratings and its numerical
application,” J. Opt. 11, 235–241 (1980).

L. Rayleigh, “On the dynamical theory of
gratings,” Proc. R. Soc. London A 79, 399–416 (1907).

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for
diffraction gratings and its numerical
application,” J. Opt. 11, 235–241 (1980).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

V. F. Paz, S. Peterhansel, K. Frenner, and W. Osten, “Solving the inverse grating problem
by white light interference Fourier
scatterometry,” Light Sci. Appl. 1, e36 (2012).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

H.-T. Huang, W. Kong, and F. L. Terry, “Normal-incidence spectroscopic
ellipsometry for critical dimension monitoring,” Appl. Phys. Lett. 78, 3983 (2001).

[Crossref]

D. Kim, M. Jin, H. Lee, S. Kim, and R. Magnusson, “Snapshot conical diffraction phase
image measurement in angle-resolved
microellipsometry,” in Imaging and Applied
Optics (Optical Society of America, 2013), paper. CTu3C.5.

Q. Kemao, “Two-dimensional windowed Fourier
transform for fringe pattern analysis: principles, applications
and implementation,” Opt. Lasers
Eng. 45, 304–317 (2007).

D. Kim, M. Jin, H. Lee, S. Kim, and R. Magnusson, “Snapshot conical diffraction phase
image measurement in angle-resolved
microellipsometry,” in Imaging and Applied
Optics (Optical Society of America, 2013), paper. CTu3C.5.

D. Kim, M. Jin, H. Lee, S. Kim, and R. Magnusson, “Snapshot conical diffraction phase
image measurement in angle-resolved
microellipsometry,” in Imaging and Applied
Optics (Optical Society of America, 2013), paper. CTu3C.5.

H.-T. Huang, W. Kong, and F. L. Terry, “Normal-incidence spectroscopic
ellipsometry for critical dimension monitoring,” Appl. Phys. Lett. 78, 3983 (2001).

[Crossref]

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, “Interferometric coherent Fourier
scatterometry: a method for obtaining high sensitivity in the
optical inverse-grating problem,” J.
Opt. 15, 075707 (2013).

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

N. Kumar, “Coherent Fourier scatterometry,” Ph.D. thesis (TU Delft, 2014).

D. Kim, M. Jin, H. Lee, S. Kim, and R. Magnusson, “Snapshot conical diffraction phase
image measurement in angle-resolved
microellipsometry,” in Imaging and Applied
Optics (Optical Society of America, 2013), paper. CTu3C.5.

D. Kim, M. Jin, H. Lee, S. Kim, and R. Magnusson, “Snapshot conical diffraction phase
image measurement in angle-resolved
microellipsometry,” in Imaging and Applied
Optics (Optical Society of America, 2013), paper. CTu3C.5.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical
Testing, 2nd ed. (CRC Press, 2005), Chap. 7.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical
Testing, 2nd ed. (CRC Press, 2005), Chap. 7.

M. van Kraaij and J. Maubauch, “A more efficient rigorous
coupled-wave analysis algorithm,” in Progress in Industrial Mathematics at ECMI 2004, Vol. 8 of Mathematics in Industry, (Springer, 2006), pp. 164–168.

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for
diffraction gratings and its numerical
application,” J. Opt. 11, 235–241 (1980).

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

V. F. Paz, S. Peterhansel, K. Frenner, and W. Osten, “Solving the inverse grating problem
by white light interference Fourier
scatterometry,” Light Sci. Appl. 1, e36 (2012).

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

V. F. Paz, S. Peterhansel, K. Frenner, and W. Osten, “Solving the inverse grating problem
by white light interference Fourier
scatterometry,” Light Sci. Appl. 1, e36 (2012).

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach, “Coherent Fourier scatterometry for
detection of nanometer-sized particles on a planar substrate
surface,” Opt. Express 22, 13250–13262 (2014).

[Crossref]

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, “Interferometric coherent Fourier
scatterometry: a method for obtaining high sensitivity in the
optical inverse-grating problem,” J.
Opt. 15, 075707 (2013).

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

V. F. Paz, S. Peterhansel, K. Frenner, and W. Osten, “Solving the inverse grating problem
by white light interference Fourier
scatterometry,” Light Sci. Appl. 1, e36 (2012).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

B. B. M. Wurm and F. Pilarski, “A new flexible scatterometer for
critical dimensional metrology,” Rev. Sci.
Instrum. 81, 023701 (2010).

[Crossref]

S. Qian, Introduction to Time-Frequency and Wavelet
Transform, 2nd ed. (Prentice-Hall, 2002).

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for
diffraction gratings and its numerical
application,” J. Opt. 11, 235–241 (1980).

L. Rayleigh, “On the dynamical theory of
gratings,” Proc. R. Soc. London A 79, 399–416 (1907).

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach, “Coherent Fourier scatterometry for
detection of nanometer-sized particles on a planar substrate
surface,” Opt. Express 22, 13250–13262 (2014).

[Crossref]

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, “Interferometric coherent Fourier
scatterometry: a method for obtaining high sensitivity in the
optical inverse-grating problem,” J.
Opt. 15, 075707 (2013).

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical
Testing, 2nd ed. (CRC Press, 2005), Chap. 7.

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

H.-T. Huang, W. Kong, and F. L. Terry, “Normal-incidence spectroscopic
ellipsometry for critical dimension monitoring,” Appl. Phys. Lett. 78, 3983 (2001).

[Crossref]

P. Török and T. Wilson, “Rigorous theory for axial resolution
in confocal microscopes,” Opt.
Commun. 137, 127–135 (1997).

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach, “Coherent Fourier scatterometry for
detection of nanometer-sized particles on a planar substrate
surface,” Opt. Express 22, 13250–13262 (2014).

[Crossref]

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, “Interferometric coherent Fourier
scatterometry: a method for obtaining high sensitivity in the
optical inverse-grating problem,” J.
Opt. 15, 075707 (2013).

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

M. van Kraaij and J. Maubauch, “A more efficient rigorous
coupled-wave analysis algorithm,” in Progress in Industrial Mathematics at ECMI 2004, Vol. 8 of Mathematics in Industry, (Springer, 2006), pp. 164–168.

M. N. Vesperinas, Scattering and Diffraction in Physical
Optics, 2nd ed. (World Scientific, 2005), Chap. 9.9, pp. 316–319.

P. Török and T. Wilson, “Rigorous theory for axial resolution
in confocal microscopes,” Opt.
Commun. 137, 127–135 (1997).

B. B. M. Wurm and F. Pilarski, “A new flexible scatterometer for
critical dimensional metrology,” Rev. Sci.
Instrum. 81, 023701 (2010).

[Crossref]

Q. Zhan and J. Leger, “High resolution imaging
ellipsometer,” Appl. Opt. 41, 4443–4450 (2002).

[Crossref]

M. A. Herraez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping
algorithm based on sorting by reliability following a
noncontinuous path,” Appl. Opt. 41, 7437–7444 (2002).

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, “Scatterfield microscopy for extending
the limits of image-based optical metrology,” Appl. Opt. 46, 4248–4257 (2007).

[Crossref]

O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent
optical scatterometry,” Appl. Phys.
B 105, 775–781 (2011).

H.-T. Huang, W. Kong, and F. L. Terry, “Normal-incidence spectroscopic
ellipsometry for critical dimension monitoring,” Appl. Phys. Lett. 78, 3983 (2001).

[Crossref]

N. Kumar, O. El Gawhary, S. Roy, S. E. Pereira, and H. P. Urbach, “Phase retrieval between overlapping
orders in coherent Fourier scatterometry using
scanning,” J. Eur. Opt. Soc. 8, 13048 (2013).

[Crossref]

A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, “Phase-sensitive structured
illumination to detect nanosized asymmetries in silicon
trenches,” J. Micro/Nanolithogr. MEMS
MOEMS 14, 021104 (2015).

S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, “Interferometric coherent Fourier
scatterometry: a method for obtaining high sensitivity in the
optical inverse-grating problem,” J.
Opt. 15, 075707 (2013).

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for
diffraction gratings and its numerical
application,” J. Opt. 11, 235–241 (1980).

V. F. Paz, S. Peterhansel, K. Frenner, and W. Osten, “Solving the inverse grating problem
by white light interference Fourier
scatterometry,” Light Sci. Appl. 1, e36 (2012).

P. Török and T. Wilson, “Rigorous theory for axial resolution
in confocal microscopes,” Opt.
Commun. 137, 127–135 (1997).

A. V. Tishchenko, “Numerical demonstration of the
validity of the Rayleigh hypothesis,” Opt.
Express 17, 17102–17117 (2009).

[Crossref]

S. Roy, A. C. Assafrão, S. F. Pereira, and H. P. Urbach, “Coherent Fourier scatterometry for
detection of nanometer-sized particles on a planar substrate
surface,” Opt. Express 22, 13250–13262 (2014).

[Crossref]

M. H. Madsen and P.-E. Hansen, “Imaging scatterometry for flexible
measurements of patterned areas,” Opt.
Express 24, 1109–1117 (2016).

[Crossref]

Q. Kemao, “Two-dimensional windowed Fourier
transform for fringe pattern analysis: principles, applications
and implementation,” Opt. Lasers
Eng. 45, 304–317 (2007).

L. Rayleigh, “On the dynamical theory of
gratings,” Proc. R. Soc. London A 79, 399–416 (1907).

P. Boher, J. Petit, L. Teroux, J. Foucher, Y. Desieres, J. Hazard, and P. Chaton, “Optical Fourier transform
scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).

[Crossref]

B. B. M. Wurm and F. Pilarski, “A new flexible scatterometer for
critical dimensional metrology,” Rev. Sci.
Instrum. 81, 023701 (2010).

[Crossref]

D. Kim, M. Jin, H. Lee, S. Kim, and R. Magnusson, “Snapshot conical diffraction phase
image measurement in angle-resolved
microellipsometry,” in Imaging and Applied
Optics (Optical Society of America, 2013), paper. CTu3C.5.

M. van Kraaij and J. Maubauch, “A more efficient rigorous
coupled-wave analysis algorithm,” in Progress in Industrial Mathematics at ECMI 2004, Vol. 8 of Mathematics in Industry, (Springer, 2006), pp. 164–168.

M. N. Vesperinas, Scattering and Diffraction in Physical
Optics, 2nd ed. (World Scientific, 2005), Chap. 9.9, pp. 316–319.

D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical
Testing, 2nd ed. (CRC Press, 2005), Chap. 7.

N. Kumar, “Coherent Fourier scatterometry,” Ph.D. thesis (TU Delft, 2014).

M. Gdeisat and F. Lilley, “Two-dimensional phase unwrapping
problem,” https://www.ljmu.ac.uk/~/media/files/ljmu/about-us/faculties-and-schools/tae/geri/two_dimensional_phase_unwrapping_finalpdf.pdf?la=en .

S. Qian, Introduction to Time-Frequency and Wavelet
Transform, 2nd ed. (Prentice-Hall, 2002).