Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive step-size algorithm for Fourier beam-propagation method with absorbing boundary layer of auto-determined width

Abstract

Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Comparison of highly efficient absorbing boundary conditions for the beam propagation method

David Jiménez and Francesc Pérez-Murano
J. Opt. Soc. Am. A 18(8) 2015-2025 (2001)

Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy

Chao Zuo, Jiasong Sun, and Qian Chen
Opt. Express 24(18) 20724-20744 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved