Abstract

The frequency difference of dual-frequency lasers is increasingly becoming an area of focus in research. The stabilization of beat frequency is of significance in fields such as synthetic wavelength and shows great potential in precise measurement. In this paper, a novel device based on stress-induced birefringence closed-loop control is proposed. Experiments are carried out on a dual-frequency He–Ne Zeeman-birefringence laser with the output mirror sealed in the opposite direction. The results show that the device is capable of controlling the frequency difference variation in 1.3%, in a convenient and highly cost-effective way, and it can increase the quantity of frequency difference, which is crucial to the application of precise measurement through dual-frequency lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Internal stress measurement by laser feedback method

Wenxue Chen, Shulian Zhang, and Xingwu Long
Opt. Lett. 37(13) 2433-2435 (2012)

Stress-induced tuning of a diode-laser-excited monolithic Nd:YAG laser

Adelbert Owyoung and Peter Esherick
Opt. Lett. 12(12) 999-1001 (1987)

Space-qualified fast steering mirror for an image stabilization system of space astronomical telescopes

Zhichao Dong, Aimin Jiang, Yanfeng Dai, and Jianwei Xue
Appl. Opt. 57(31) 9307-9315 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription