Abstract

Stray light perturbations are unwanted distortions of the measured spectrum due to the nonideal performance of optical radiometers. Because of this, stray light characterization and correction is essential when accurate radiometric measurements are a necessity. In agreement with such a need, this study focused on stray light correction of hyperspectral radiometers widely applied for above-water measurements to determine the remote-sensing reflectance (RRS). Stray light of sample radiometers was experimentally characterized and a correction algorithm was developed and applied to field measurements performed in the Mediterranean Sea. Results indicate that mean stray light corrections are appreciable, with values generally varying from 1% to +1% in the 400–700 nm spectral region for downward irradiance and sky radiance, and from 1% to +4% for total radiance from the sea. Mean corrections for data products such as RRS exhibit values that depend on water type varying between 0.5% and +1% in the blue–green spectral region, with peaks up to 9% in the red in eutrophic waters. The possibility of using one common stray light correction matrix for the analyzed class of radiometers was also investigated. Results centered on RRS support such a feasibility at the expense of an increment of the uncertainty typically well below 0.5% in the blue–green and up to 1% in the red, assuming sensors are based on spectrographs from the same production batch.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarimetric characteristics of a class of hyperspectral radiometers

Marco Talone and Giuseppe Zibordi
Appl. Opt. 55(35) 10092-10104 (2016)

Spectral band adjustments for remote sensing reflectance spectra in coastal/inland waters

N. Pahlevan, B. Smith, C. Binding, and D. M. O’Donnell
Opt. Express 25(23) 28650-28667 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Zibordi and K. J. Voss, “In situ optical radiometry in the visible and near infrared,” in Optical Radiometry for Oceans Climate Measurements, Experimental Methods in the Physical Sciences, G. Zibordi, C. Donlon, and A. Parr, eds. (Elsevier/Academic, 2014), Vol. 47, pp. 247–304.
  2. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006).
    [Crossref]
  3. M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
    [Crossref]
  4. E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).
  5. S. G. R. Salim, N. P. Fox, W. S. Hartree, E. R. Woolliams, T. Sun, and K. T. V. Grattan, “Stray light correction for diode-array-based spectrometers using a monochromator,” Appl. Opt. 50, 5130–5138 (2011).
    [Crossref]
  6. TriOS RAMSES manual, available at www. TriOS.de .
  7. M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, “Stray light correction algorithm for multichannel hyperspectral spectrographs,” Appl. Opt. 51, 3631–3641 (2012).
    [Crossref]
  8. C. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38, 7442–7455 (1999).
    [Crossref]
  9. G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
    [Crossref]
  10. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41, 6289–6306 (2002).
    [Crossref]
  11. F. E. Nicodemus, ed., Self-Study Manual on Optical Radiation Measurements: Part I—Concepts, (U.S. Department of Commerce, 1978), Chaps. 4 and 5.
  12. H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
    [Crossref]

2012 (2)

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, “Stray light correction algorithm for multichannel hyperspectral spectrographs,” Appl. Opt. 51, 3631–3641 (2012).
[Crossref]

2011 (1)

2009 (1)

M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
[Crossref]

2006 (1)

2002 (1)

1999 (1)

1995 (1)

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Ansko, I.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Antoine, D.

Blumthaler, M.

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Brown, S. W.

Clark, D. K.

M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, “Stray light correction algorithm for multichannel hyperspectral spectrographs,” Appl. Opt. 51, 3631–3641 (2012).
[Crossref]

M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
[Crossref]

Feinholz, M. E.

M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, “Stray light correction algorithm for multichannel hyperspectral spectrographs,” Appl. Opt. 51, 3631–3641 (2012).
[Crossref]

M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
[Crossref]

Flora, S. J.

M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, “Stray light correction algorithm for multichannel hyperspectral spectrographs,” Appl. Opt. 51, 3631–3641 (2012).
[Crossref]

M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
[Crossref]

Fox, N. P.

Gentili, B.

Grattan, K. T. V.

Hartree, W. S.

Huber, M.

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Icely, J.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Johnson, B. C.

Kratzer, S.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Kuik, F.

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Lykke, K. R.

Mobley, C.

Moore, G.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Morel, A.

Ohno, Y.

Piera, J.

E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).

Pons, S.

E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).

Pujol, J.

E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).

Reinart, A.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Reinen, H. A. J. M.

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Ruddick, K.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Salim, S. G. R.

Slaper, H.

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

Sun, T.

Torrecilla, E.

E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).

Vilaseca, M.

E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).

Voss, K. J.

G. Zibordi and K. J. Voss, “In situ optical radiometry in the visible and near infrared,” in Optical Radiometry for Oceans Climate Measurements, Experimental Methods in the Physical Sciences, G. Zibordi, C. Donlon, and A. Parr, eds. (Elsevier/Academic, 2014), Vol. 47, pp. 247–304.

Woolliams, E. R.

Yarbrough, M. A.

M. E. Feinholz, S. J. Flora, S. W. Brown, Y. Zong, K. R. Lykke, M. A. Yarbrough, B. C. Johnson, and D. K. Clark, “Stray light correction algorithm for multichannel hyperspectral spectrographs,” Appl. Opt. 51, 3631–3641 (2012).
[Crossref]

M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
[Crossref]

Zibordi, G.

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

G. Zibordi and K. J. Voss, “In situ optical radiometry in the visible and near infrared,” in Optical Radiometry for Oceans Climate Measurements, Experimental Methods in the Physical Sciences, G. Zibordi, C. Donlon, and A. Parr, eds. (Elsevier/Academic, 2014), Vol. 47, pp. 247–304.

Zong, Y.

Appl. Opt. (5)

Geophys. Res. Lett. (1)

H. Slaper, H. A. J. M. Reinen, M. Blumthaler, M. Huber, and F. Kuik, “Comparing ground-level spectrally resolved solar UV measurements using various instruments: a technique resolving effects of wavelength shift and slit width,” Geophys. Res. Lett. 22, 2721–2724 (1995).
[Crossref]

J. Atmos. Ocean. Technol. (1)

M. E. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray light correction of the marine optical system,” J. Atmos. Ocean. Technol. 26, 57–73 (2009).
[Crossref]

Ocean Sci. (1)

G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart, “In situ determination of the remote sensing relflectance: an inter-comparison,” Ocean Sci. 8, 567–586 (2012).
[Crossref]

Other (4)

F. E. Nicodemus, ed., Self-Study Manual on Optical Radiation Measurements: Part I—Concepts, (U.S. Department of Commerce, 1978), Chaps. 4 and 5.

E. Torrecilla, S. Pons, M. Vilaseca, J. Piera, and J. Pujol, “Stray light correction of in-water array spectroradiometers. Effects on underwater optical measurements,” Proceedings of IEEE/OEE Oceans Conference and Exhibition, Quebec, Canada (2008).

TriOS RAMSES manual, available at www. TriOS.de .

G. Zibordi and K. J. Voss, “In situ optical radiometry in the visible and near infrared,” in Optical Radiometry for Oceans Climate Measurements, Experimental Methods in the Physical Sciences, G. Zibordi, C. Donlon, and A. Parr, eds. (Elsevier/Academic, 2014), Vol. 47, pp. 247–304.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. TRIOS RAMSES-ARC radiance (upper panel) and RAMSES-ACC irradiance (lower panel) sensors (courtesy of TriOS).
Fig. 2.
Fig. 2. Diagram illustrating the stray light generation and correction model.
Fig. 3.
Fig. 3. Selected examples of in-band regions determined at sample center wavelengths. Spectra are normalized to their maximum value; IB regions are shown in white and bounded by the segments over-plotted in black, while the portions of the spectra outside the IB regions are in gray. The dashed red and black lines indicate the 50% and 1% peak levels, respectively.
Fig. 4.
Fig. 4. Schematic of the algorithm applied for the determination of the inverse stray light distribution function (SDF) matrix using N independent (here N = 12 ) line spread functions (LSFs) with characterized in-band (IB) responses.
Fig. 5.
Fig. 5. SDF matrix for SAM-8346. The measurement and excitation wavelengths are on the x and y axes in units of nanometers, respectively. The values of the matrix coefficients, in normalized raw counts, are displayed in log-scale. The green and red ellipses highlight spectrally extended stray light perturbations. The black straight lines near the diagonal identify the IB regions.
Fig. 6.
Fig. 6. Average of absolute differences Δ A between the SDF matrix of SAM-8346 and those of SAM-8313 and SAM-835C, in normalized raw counts. The measurement and excitation wavelengths are displayed on the x and y axes in units of nanometers, respectively. The values of the matrix coefficients are displayed in log-scale.
Fig. 7.
Fig. 7. Application of the stray light correction matrix corresponding to SAM-8346 to a monochromatic signal at 576 nm. The measured and the corrected signals are shown in blue and red, respectively. The 1-count level is indicated by the dashed line.
Fig. 8.
Fig. 8. Results from the sensitivity analysis performed with (a) sinusoidal and (b) random noise contributions. The input noise contributions are in blue, the retrieved signal is in red, and their difference is in black; all are expressed by the percentage of the signal applied for the determination of the SDF.
Fig. 9.
Fig. 9. Schematic of the processing chain applied to quantify the impact of stray light corrections. Black arrows indicate the levels of processing (i.e., L0, L1, and L2) at which the comparisons are performed.
Fig. 10.
Fig. 10. Mean stray light correction values μ and related standard deviations σ (indicated as error bars) determined from the ε values of 18 measurement stations for data at (a) Level 0, (b) Level 1, and (c) Level 2.
Fig. 11.
Fig. 11. (a) Spectra in raw counts of L T from selected stations SB (blue) and NA (red), as well as the spectrum from the calibration source (CAL, black) after stray light correction. (b) Percent correction applied to the three raw-data spectra.
Fig. 12.
Fig. 12. (a) Calibrated spectra of L T from stations SB (blue) and NA (red), as well as a spectrum from standard source applied for calibrations (black) after the stray light correction. (b) Percent correction ε applied to calibrated spectra.
Fig. 13.
Fig. 13. (a)  R RS from stations SB (blue) and NA (red) after stray light correction. (b) Percent correction ε applied.
Fig. 14.
Fig. 14. Stray light generation and correction model including the deconvolution/convolution process.

Tables (5)

Tables Icon

Table 1. Root Mean Square (rms) of Percent Differences between Noncorrected and Corrected Measurements at Different Levels of Processing: Level 0 (L0), Level 1 (L1), and Level 2 (L2) a

Tables Icon

Table 2. Possible Combinations of SDF Matrices Versus Sensors

Tables Icon

Table 3. Root Mean Square (rms) of Percent Differences between Data Corrected for Stray Light Perturbations Using Configurations 2–6 with respect to Configuration 1 at Different Levels of Processing: Level 0 (L0), Level 1 (L1), and Level 2 (L2)

Tables Icon

Table 4. Root Mean Square (rms) of the Percent Differences between Level 2 (L2) Data Corrected for Stray Light Perturbations Using One Common Matrix Versus Three Different Matrices at Different Levels of Processing

Tables Icon

Table 5. Root Mean Square (rms) of Percent Differences ε Induced by the Introduction of the Deconvolution/Convolution Step in the Processing Chain

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

M ( n ) = I ( n ) / 65535 ,
C ( n ) = M ( n ) B ( n ) ,
B ( n ) = B 0 ( n ) + t / t 0 · B 1 ( n ) ,
M ^ ( n ) = [ C ( n ) D 0 ] · 65535 ,
D 0 = 1 N b N b C ( i ) .
g i , j = { LSF IB ( LSF ) 0 outside IB , inside IB ,
Y m = Y IB + G · Y IB = [ I + G ] · Y IB = A · Y IB ,
Δ A = | A 8313 A 8346 | + | A 835 C A 8346 | 2 .
L w ( θ , Δ ϕ , λ ) = L T ( θ , Δ ϕ , λ ) ρ ( θ , Δ ϕ , θ 0 , W ) · L i ( θ , Δ ϕ , λ ) ,
R RS ( λ ) = L w ( θ , Δ ϕ , λ ) E d ( 0 + , λ ) · R 0 R ( θ , W ) · Q ( θ , Δ ϕ , θ 0 , λ , τ a , IOP ) Q n ( θ 0 , λ , τ a , IOP ) ,
F ( n ) = ( M ^ ( n ) 65535 t 0 t ) 1 S ( n ) ,
ε = 100 · ( X n c X c ) / X n c ,

Metrics