Abstract

The Monte Carlo simulation of light propagation in optical systems requires the processing of a large number of photons to achieve a satisfactory statistical accuracy. Based on classical Mie scattering, we experimentally show that the independence of photons propagating through a turbid medium imposes a postulate for a concurrent and scalable programming paradigm of general purpose graphics processing units. This ensures that, without rewriting code, increasingly complex optical systems can be simulated if more processors are available in the future.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Next-generation acceleration and code optimization for light transport in turbid media using GPUs

Erik Alerstam, William Chun Yip Lo, Tianyi David Han, Jonathan Rose, Stefan Andersson-Engels, and Lothar Lilge
Biomed. Opt. Express 1(2) 658-675 (2010)

GPU acceleration of Monte Carlo simulations for polarized photon scattering in anisotropic turbid media

Pengcheng Li, Celong Liu, Xianpeng Li, Honghui He, and Hui Ma
Appl. Opt. 55(27) 7468-7476 (2016)

GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues

Nunu Ren, Jimin Liang, Xiaochao Qu, Jianfeng Li, Bingjia Lu, and Jie Tian
Opt. Express 18(7) 6811-6823 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription