Abstract

The functionality of poly(dimethylsiloxane) (PDMS)-based interferometric fiber sensors for volatile organic compounds (VOCs) detection is investigated and experimentally demonstrated. Two interferometric configurations are considered in this work, namely Fabry–Perot (FP) and Sagnac interferometers (SI). Both sensors are functionalized with a thin layer of VOC-sensitive polymer: PDMS, whose degree of swelling varies as a function of VOC concentrations. This swelling effect will result in an optical path length and birefringence modulation for FP and SI sensors, respectively. In this paper, the two common VOCs, ethanol and 2-propanol, were detected by the proposed sensor and the inverse matrix method was used to differentiate the VOC in gas mixture.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating

Chang-sub Park, Yeonjeong Han, Kyung-Il Joo, Yong Wook Lee, Shin-Won Kang, and Hak-Rin Kim
Opt. Express 18(24) 24753-24761 (2010)

Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film

Cai-Bin Yu, Yu Wu, Chen Li, Fan Wu, Jin-Hao Zhou, Yuan Gong, Yun-Jiang Rao, and Yuan-Fu Chen
Opt. Mater. Express 7(6) 2111-2116 (2017)

Optical D-fiber-based volatile organic compound sensor

John D. Gordon, Tyson L. Lowder, Richard H. Selfridge, and Stephen M. Schultz
Appl. Opt. 46(32) 7805-7810 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription