Abstract

Mueller ellipsometry in the mid-infrared (IR) spectral range can be used to obtain information about chemical composition through the vibrational spectra of samples. In the case of very thin films (<100  nm), the ellipsometric spectral features due to vibrational absorption are in general quite weak, and sometimes they are hidden by the noise in the measured data. In this work, we present one method based on the use of optical spacers as a tool to enhance the sensitivity of IR Mueller ellipsometry. An optical spacer is a thin film made of a known material which is between the substrate and the layer of interest. We show that, when the thickness of the two layers fulfills a given condition, the spectral features due to vibrational absorptions are enhanced. We explain the enhancement effect in terms of the Airy formula. The theoretical discussion is illustrated with two examples. We analyzed polystyrene thin films deposited on silicon wafers. Some of the wafers were covered by a thin film of thermal silicon dioxide (SiO2), which was used as a spacer. The results show the suitability of the proposed technique to overcome the lack of sensitivity in ellipsometric measurements when it comes to working with either very thin films or materials with low absorption.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband infrared Mueller-matrix ellipsometry for studies of structured surfaces and thin films

Andreas Furchner, Cordula Walder, Matthias Zellmeier, Jörg Rappich, and Karsten Hinrichs
Appl. Opt. 57(27) 7895-7904 (2018)

Accurate characterization of nanoimprinted resist patterns using Mueller matrix ellipsometry

Xiuguo Chen, Shiyuan Liu, Chuanwei Zhang, Hao Jiang, Zhichao Ma, Tangyou Sun, and Zhimou Xu
Opt. Express 22(12) 15165-15177 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. K. Vendra, L. Wu, and S. Krishnan, Nanostructured Thin Films and Surface (Wiley, 2010), Chap. 1.
  2. G. Ozaydin-Ince, A. M. Coclite, and K. K. Gleason, “CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes,” Rep. Prog. Phys. 75, 016501 (2012).
    [Crossref]
  3. D. Campbell, R. A. Pethrick, and J. R. White, Polymer Characterization: Physical Techniques (CRC Press, 2000).
  4. A. Röseler and E.-H. Korte, “Infrared ellipsometric analysis of organic film-on-substrate samples,” Thin Solid Films 313–314, 708–712 (1998).
    [Crossref]
  5. K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
    [Crossref]
  6. M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
    [Crossref]
  7. W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
    [Crossref]
  8. A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
    [Crossref]
  9. A. Tamanai, S. Beck, and A. Pucci, “Mid-infrared characterization of thiophene-based thin polymer films,” Displays 34, 399–405 (2013).
    [Crossref]
  10. K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
    [Crossref]
  11. M. Reithmeier and A. Erbe, “Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
    [Crossref]
  12. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
    [Crossref]
  13. E. Garcia-Caurel, A. Lizana, G. Ndong, B. Al-Bugami, C. Bernon, E. Al-Qahtani, F. Rengnez, and A. de Martino, “Mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements,” Appl. Opt. 54, 2776–2785 (2015).
    [Crossref]
  14. R. A. Chipman, OSA Handbook of Optics (McGraw-Hill, 1995), Chap. 22.
  15. E. Compain, S. Poirier, and B. Drévillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
    [Crossref]
  16. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18, 9815–9830 (2010).
    [Crossref]
  17. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  18. E. Garcia-Caurel, A. De Martino, J. P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
    [Crossref]
  19. G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290, 40–45 (1996).
    [Crossref]
  20. M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
    [Crossref]
  21. S. Jitian, “Optical study of steel surfaces after thermochemical treatment,” J. Eng. VII, 149–151 (2009).
  22. C. Y. Liang and S. Krimm, “Infrared spectra of high polymers. VI. Polystyrene,” J. Polym. Sci. 27, 241–254 (1958).
    [Crossref]
  23. J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
    [Crossref]
  24. Z. Knittl, Optics of Thin Films (Wiley, 1976), Chap. 2.
  25. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

2015 (1)

2014 (1)

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
[Crossref]

2013 (3)

A. Tamanai, S. Beck, and A. Pucci, “Mid-infrared characterization of thiophene-based thin polymer films,” Displays 34, 399–405 (2013).
[Crossref]

E. Garcia-Caurel, A. De Martino, J. P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

2012 (1)

G. Ozaydin-Ince, A. M. Coclite, and K. K. Gleason, “CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes,” Rep. Prog. Phys. 75, 016501 (2012).
[Crossref]

2010 (2)

M. Reithmeier and A. Erbe, “Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[Crossref]

A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18, 9815–9830 (2010).
[Crossref]

2009 (2)

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

S. Jitian, “Optical study of steel surfaces after thermochemical treatment,” J. Eng. VII, 149–151 (2009).

2006 (2)

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[Crossref]

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

2004 (1)

K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
[Crossref]

2002 (1)

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

1999 (1)

1998 (1)

A. Röseler and E.-H. Korte, “Infrared ellipsometric analysis of organic film-on-substrate samples,” Thin Solid Films 313–314, 708–712 (1998).
[Crossref]

1996 (1)

G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290, 40–45 (1996).
[Crossref]

1993 (1)

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

1958 (1)

C. Y. Liang and S. Krimm, “Infrared spectra of high polymers. VI. Polystyrene,” J. Polym. Sci. 27, 241–254 (1958).
[Crossref]

Al-Bugami, B.

Alonso, M. I.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
[Crossref]

Al-Qahtani, E.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Barth, K. L.

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Beck, S.

A. Tamanai, S. Beck, and A. Pucci, “Mid-infrared characterization of thiophene-based thin polymer films,” Displays 34, 399–405 (2013).
[Crossref]

Bergmair, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Bernon, C.

Böhme, D.

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

Boreman, G.

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

Bradley, D. D. C.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
[Crossref]

Bruno, G.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Campbell, D.

D. Campbell, R. A. Pethrick, and J. R. White, Polymer Characterization: Physical Techniques (CRC Press, 2000).

Campos, J.

Campoy-Quiles, M.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
[Crossref]

Cardona, M.

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

Cattelan, D.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Chipman, R. A.

R. A. Chipman, OSA Handbook of Optics (McGraw-Hill, 1995), Chap. 22.

Cobet, C.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Coclite, A. M.

G. Ozaydin-Ince, A. M. Coclite, and K. K. Gleason, “CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes,” Rep. Prog. Phys. 75, 016501 (2012).
[Crossref]

Compain, E.

de Martino, A.

E. Garcia-Caurel, A. Lizana, G. Ndong, B. Al-Bugami, C. Bernon, E. Al-Qahtani, F. Rengnez, and A. de Martino, “Mid-infrared Mueller ellipsometer with pseudo-achromatic optical elements,” Appl. Opt. 54, 2776–2785 (2015).
[Crossref]

E. Garcia-Caurel, A. De Martino, J. P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref]

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Dohcevic-Mitrovic, Z.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Drévillon, B.

Erbe, A.

M. Reithmeier and A. Erbe, “Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[Crossref]

Esser, N.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Fleischer, K.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Folks, W. R.

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

Gajic, R.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Galliet, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Garcia-Caurel, E.

Gaston, J. P.

Gensch, M.

K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
[Crossref]

Gleason, K. K.

G. Ozaydin-Ince, A. M. Coclite, and K. K. Gleason, “CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes,” Rep. Prog. Phys. 75, 016501 (2012).
[Crossref]

Hartung, A.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

Hemzal, D.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Hingerl, K.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Hinrichs, K.

K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
[Crossref]

Hoffmann, J. M.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

Hooper, I. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[Crossref]

Humlicek, J.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Iemmi, C.

Jellison, G. E.

G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290, 40–45 (1996).
[Crossref]

Jitian, S.

S. Jitian, “Optical study of steel surfaces after thermochemical treatment,” J. Eng. VII, 149–151 (2009).

Kamaräs, K.

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

Keilmann, F.

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

Knittl, Z.

Z. Knittl, Optics of Thin Films (Wiley, 1976), Chap. 2.

Korte, E. H.

K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
[Crossref]

Korte, E.-H.

A. Röseler and E.-H. Korte, “Infrared ellipsometric analysis of organic film-on-substrate samples,” Thin Solid Films 313–314, 708–712 (1998).
[Crossref]

Krimm, S.

C. Y. Liang and S. Krimm, “Infrared spectra of high polymers. VI. Polystyrene,” J. Polym. Sci. 27, 241–254 (1958).
[Crossref]

Krishnan, S.

V. K. Vendra, L. Wu, and S. Krishnan, Nanostructured Thin Films and Surface (Wiley, 2010), Chap. 1.

Liang, C. Y.

C. Y. Liang and S. Krimm, “Infrared spectra of high polymers. VI. Polystyrene,” J. Polym. Sci. 27, 241–254 (1958).
[Crossref]

Lizana, A.

Losurdo, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Manning, M.

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

Maß, T. W. W.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

Monterrat, E.

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

Ndong, G.

Ossikovski, R.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Ozaydin-Ince, G.

G. Ozaydin-Ince, A. M. Coclite, and K. K. Gleason, “CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes,” Rep. Prog. Phys. 75, 016501 (2012).
[Crossref]

Peinado, A.

Pendey, S. K.

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

Pethrick, R. A.

D. Campbell, R. A. Pethrick, and J. R. White, Polymer Characterization: Physical Techniques (CRC Press, 2000).

Poirier, S.

Popovic, Z. V.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Preist, T. W.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[Crossref]

Pribil, G.

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

Pucci, A.

A. Tamanai, S. Beck, and A. Pucci, “Mid-infrared characterization of thiophene-based thin polymer films,” Displays 34, 399–405 (2013).
[Crossref]

Reithmeier, M.

M. Reithmeier and A. Erbe, “Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[Crossref]

Rengnez, F.

Richter, J.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

Richter, L. J.

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
[Crossref]

Röseler, A.

K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
[Crossref]

A. Röseler and E.-H. Korte, “Infrared ellipsometric analysis of organic film-on-substrate samples,” Thin Solid Films 313–314, 708–712 (1998).
[Crossref]

Sambles, J. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[Crossref]

Saxl, O.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

Slafer, D.

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

Soldera, A.

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

Tamanai, A.

A. Tamanai, S. Beck, and A. Pucci, “Mid-infrared characterization of thiophene-based thin polymer films,” Displays 34, 399–405 (2013).
[Crossref]

Taubner, T.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

Vendra, V. K.

V. K. Vendra, L. Wu, and S. Krishnan, Nanostructured Thin Films and Surface (Wiley, 2010), Chap. 1.

Vidal, J.

White, J. R.

D. Campbell, R. A. Pethrick, and J. R. White, Polymer Characterization: Physical Techniques (CRC Press, 2000).

Wu, L.

V. K. Vendra, L. Wu, and S. Krishnan, Nanostructured Thin Films and Surface (Wiley, 2010), Chap. 1.

Yan, L.

Yin, X.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

Adv. Funct. Mater. (1)

M. Campoy-Quiles, M. I. Alonso, D. D. C. Bradley, and L. J. Richter, “Advanced ellipsometric characterization of conjugated polymer films,” Adv. Funct. Mater. 24, 2116–2134 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Displays (1)

A. Tamanai, S. Beck, and A. Pucci, “Mid-infrared characterization of thiophene-based thin polymer films,” Displays 34, 399–405 (2013).
[Crossref]

Int. J. Infrared Millim. Waves (1)

W. R. Folks, S. K. Pendey, G. Pribil, D. Slafer, M. Manning, and G. Boreman, “Reflective infrared ellipsometry of plastic films,” Int. J. Infrared Millim. Waves 27, 1553–1571 (2006).
[Crossref]

J. Eng. (1)

S. Jitian, “Optical study of steel surfaces after thermochemical treatment,” J. Eng. VII, 149–151 (2009).

J. Nanopart. Res. (1)

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z. V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11, 1521–1554 (2009).
[Crossref]

J. Phys. Chem. (1)

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. 117, 11311–11316 (2013).
[Crossref]

J. Polym. Sci. (1)

C. Y. Liang and S. Krimm, “Infrared spectra of high polymers. VI. Polystyrene,” J. Polym. Sci. 27, 241–254 (1958).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

M. Reithmeier and A. Erbe, “Dielectric interlayers for increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[Crossref]

Polymer (1)

A. Soldera and E. Monterrat, “Mid-infrared optical properties of a polymer film: comparison between classical molecular simulations, spectrometry, and ellipsometry techniques,” Polymer 43, 6027–6035 (2002).
[Crossref]

Rep. Prog. Phys. (1)

G. Ozaydin-Ince, A. M. Coclite, and K. K. Gleason, “CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes,” Rep. Prog. Phys. 75, 016501 (2012).
[Crossref]

Thin Solid Films (4)

A. Röseler and E.-H. Korte, “Infrared ellipsometric analysis of organic film-on-substrate samples,” Thin Solid Films 313–314, 708–712 (1998).
[Crossref]

K. Hinrichs, A. Röseler, M. Gensch, and E. H. Korte, “Structure analysis of organic films by mid-infrared ellipsometry,” Thin Solid Films 455–456, 266–271 (2004).
[Crossref]

K. L. Barth, D. Böhme, K. Kamaräs, F. Keilmann, and M. Cardona, “Far-IR spectroscopic ellipsometer,” Thin Solid Films 234, 314–317 (1993).
[Crossref]

G. E. Jellison, “The calculation of thin film parameters from spectroscopic ellipsometry data,” Thin Solid Films 290, 40–45 (1996).
[Crossref]

Other (6)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

R. A. Chipman, OSA Handbook of Optics (McGraw-Hill, 1995), Chap. 22.

D. Campbell, R. A. Pethrick, and J. R. White, Polymer Characterization: Physical Techniques (CRC Press, 2000).

V. K. Vendra, L. Wu, and S. Krishnan, Nanostructured Thin Films and Surface (Wiley, 2010), Chap. 1.

Z. Knittl, Optics of Thin Films (Wiley, 1976), Chap. 2.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Sketch of the IR Mueller ellipsometer showing the entry and the exit arm as well as the position of the sample. The optical elements used to build the PSG and the PSA, a linear polarizer (LP1), and a double rhomb (FP1) are also shown. The vacuum chambers are schematically indicated by dashed lines. The mirrors used to focus and collimate the light beam along the optical path are also indicated (M1 to M5).
Fig. 2.
Fig. 2. (a) Simulated Ψ (black) and Δ (gray) values for a PS thin film on a silicon substrate. The PS film thicknesses considered are 700 nm (solid lines) and 500 nm (dashed lines), respectively. The corresponding |rp| (black) and |rs| (gray) for the same films in (b).
Fig. 3.
Fig. 3. Simulated Ψ (black) and Δ (gray) values for a two-layer system optimized to fulfill the enhancement condition (a) at 2800  cm1 and (c) at 1500  cm1. The corresponding |rp| and |rs| values for the two structures represented in (a) and (c) are shown in (b) and (d), respectively. For comparison, the ellipsometric angles Ψ and Δ and the |rp| and |rs| coefficients for the same PS films without spacers are also shown in dashed lines.
Fig. 4.
Fig. 4. Simulated Ψ (black) and Δ (gray) values for a PS thin film and a spacer fulfilling the enhancement condition for 1500  cm1. The thickness of the PS and the spacer films are indicated in each figure. Data around 1500  cm1 in (c) and (d) is shown in (e) and (f), respectively.
Fig. 5.
Fig. 5. Spectroscopic Mueller matrix of PS thin film deposited on Si substrate. Experimental data (gray) and simulation (black). Film thickness is 469 nm, value obtained after fitting procedure.
Fig. 6.
Fig. 6. Experimental (points) and fitted (dark gray lines) values of the spectroscopic Ψ (black) and Δ (gray). Film thicknesses are indicated in each figure. Notice the horizontal axis break in (c) and (d) to facilitate the visualization of data around 1500  cm1.
Fig. 7.
Fig. 7. Experimental (open circles) and fitted (dark gray lines) values of the spectroscopic Ψ (black) and Δ (gray) of a double layer. The thicknesses of the films are indicated in the figure.

Tables (2)

Tables Icon

Table 1. Sign of the Fresnel Coefficients r01(p), r12(p), r01(s), and r12(s), Spectral Behavior of the Reflectivity Coefficients |rp| and |rs| Near the Enhancement Condition, and Value of β Fulfilling the Enhancement Conditiona

Tables Icon

Table 2. Nominal (Nom) and Best-Fitted (Fit) Thicknesses Corresponding to Samples Shown in Fig. (6) after the Spin-Coating Processa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

M=[1Icp00Icp10000IcIs00IsIc]withIcp=cos(2Ψ)Ic=sin(2Ψ)cos(Δ)Is=sin(2Ψ)sin(Δ).
ρ=rprs=tan(Ψ)exp(iΔ),
X2=1NM1[k(IskTIskE)2σIs2+(IckTIckE)2σIc2+(IcpkTIcpkE)2σIcp2+(ΨkTΨkE)2σΨ2],
ϵPS*=ϵ+k=1Lfkωk2(ω2ωk2)+iγkω,
r012,(p,s)=r01,(p,s)+r12(p,s)exp(i2β)1+r01,(p,s)r12(p,s)exp(i2β),
β=2πdλϵ1sin2θ0,
d=λm4ϵ1sin2θ0.
r012,(p,s)=r01,(p,s)+r12(p,s)exp(i2β1)+r23(p,s)exp(i2(β1+β2))+r01,(p,s)r12(p,s)r23(p,s)exp(i2β2)1+r01,(p,s)r1,2(p,s)exp(i2β1)+r12(p,s)r23(p,s)exp(i2β2)+r01,(p,s)r23(p,s)exp(i2(β1+β2)).
r012,(p,s)r01,(p,s)+r23(p,s)exp(i2(β1+β2))1+r01,(p,s)r23(p,s)exp(i2(β1+β2)).
λm4=(d1ϵ1sin2θ0+d2ϵ2sin2θ0).

Metrics