Abstract

A volume Bragg grating recorded in photo-thermo-refractive glass was used to spectrally lock the emission from an 18-μm-wide interband cascade laser ridge to a wavelength of 3.12 μm. The spectral width of emission into the resonant mode is narrowed by more than 300 times, and the thermal wavelength shift is reduced by 60 times. While the power loss penalty is about 30%, the spectral brightness increases by 200 times.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban
Opt. Lett. 29(16) 1891-1893 (2004)

Mode stabilization of a laterally structured broad area diode laser using an external volume Bragg grating

Mario Niebuhr, Christof Zink, Andreas Jechow, Axel Heuer, Leonid B. Glebov, and Ralf Menzel
Opt. Express 23(9) 12394-12400 (2015)

Volume Bragg grating stabilized spectrally narrow Tm fiber laser

Timothy McComb, Vikas Sudesh, and Martin Richardson
Opt. Lett. 33(8) 881-883 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription