Abstract

Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors ET and EA are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanophotonic light trapping with patterned transparent conductive oxides

Alok P. Vasudev, Jon A. Schuller, and Mark L. Brongersma
Opt. Express 20(S3) A385-A394 (2012)

Study on modification of single-walled carbon nanotubes on the surface of monocrystalline silicon solar cells

Tiancheng Gong, Yong Zhu, Wenbin Xie, Ning Wang, Jie Zhang, and Wenjie Ren
Appl. Opt. 53(28) 6457-6463 (2014)

Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures

S. Abdellatif, K. Kirah, R. Ghannam, A. S. G. Khalil, and W. Anis
Appl. Opt. 54(17) 5534-5541 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xu, J. Jiang, and G. L. Liu, “Lithography-free sub-100  nm nanocone array antireflection layer for low-cost silicon solar cell,” Appl. Opt. 51, 4430–4435 (2012).
    [Crossref]
  2. M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
    [Crossref]
  3. Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
    [Crossref]
  4. J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
    [Crossref]
  5. K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
    [Crossref]
  6. Y. Zhan, X. Li, S. Wu, K. Li, Z. Yang, and A. Shang, “Enhanced photoabsorption in front-tapered single-nanowire solar cells,” Opt. Lett. 39, 5756–5759 (2014).
    [Crossref]
  7. R. Santbergen and R. J. C. van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
    [Crossref]
  8. R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21, A262–A267 (2013).
    [Crossref]
  9. A. Najar, J. Charrier, P. Pirasteh, and R. Sougrat, “Ultra-low reflection porous silicon nanowires for solar cell applications,” Opt. Express 20, 16861–16870 (2012).
    [Crossref]
  10. H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
    [Crossref]
  11. F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
    [Crossref]
  12. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
    [Crossref]
  13. B. Wang, E. Stevens, and P. W. Leu, “Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells,” Opt. Express 22, A386–A395 (2014).
    [Crossref]
  14. E. Robak, B. Grzeskiewicz, and M. Kotkowiak, “Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications,” Opt. Mater. 37, 104–109 (2014).
    [Crossref]
  15. Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
    [Crossref]
  16. B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
    [Crossref]
  17. R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
    [Crossref]
  18. V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

2015 (1)

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

2014 (8)

V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

B. Wang, E. Stevens, and P. W. Leu, “Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells,” Opt. Express 22, A386–A395 (2014).
[Crossref]

E. Robak, B. Grzeskiewicz, and M. Kotkowiak, “Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications,” Opt. Mater. 37, 104–109 (2014).
[Crossref]

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
[Crossref]

Y. Zhan, X. Li, S. Wu, K. Li, Z. Yang, and A. Shang, “Enhanced photoabsorption in front-tapered single-nanowire solar cells,” Opt. Lett. 39, 5756–5759 (2014).
[Crossref]

2013 (3)

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21, A262–A267 (2013).
[Crossref]

H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
[Crossref]

2012 (3)

2011 (1)

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

2010 (1)

2008 (1)

R. Santbergen and R. J. C. van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[Crossref]

Abbes, O.

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Abouda Lachiheb, M.

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Bai, F.

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Bang, J. H.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

Bouaïcha, M.

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Bui, H.

V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

Charrier, J.

Dong, G.

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Dong, J. R.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

Duan, Z.

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Dutta, M.

V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

Fang, M.

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Fu, P.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Fukata, N.

V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

Grzeskiewicz, B.

E. Robak, B. Grzeskiewicz, and M. Kotkowiak, “Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications,” Opt. Mater. 37, 104–109 (2014).
[Crossref]

Guo, Z.

Ho, J. C.

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Jee, S.-W.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
[Crossref]

Jiang, J.

Jung, J.-Y.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
[Crossref]

Kotkowiak, M.

E. Robak, B. Grzeskiewicz, and M. Kotkowiak, “Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications,” Opt. Mater. 37, 104–109 (2014).
[Crossref]

Lee, J.-H.

K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
[Crossref]

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
[Crossref]

Leu, P. W.

B. Wang, E. Stevens, and P. W. Leu, “Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells,” Opt. Express 22, A386–A395 (2014).
[Crossref]

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[Crossref]

Li, K.

Li, M.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Li, R.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Li, X.

K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
[Crossref]

Y. Zhan, X. Li, S. Wu, K. Li, Z. Yang, and A. Shang, “Enhanced photoabsorption in front-tapered single-nanowire solar cells,” Opt. Lett. 39, 5756–5759 (2014).
[Crossref]

Li, Y.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Lin, H.

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Liu, G. L.

Liu, S.

K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
[Crossref]

Liu, X.

H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
[Crossref]

Mwenya, T.

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Nafie, N.

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Najar, A.

Park, K.-T.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
[Crossref]

Pirasteh, P.

Robak, E.

E. Robak, B. Grzeskiewicz, and M. Kotkowiak, “Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications,” Opt. Mater. 37, 104–109 (2014).
[Crossref]

Santbergen, R.

R. Santbergen, A. H. M. Smets, and M. Zeman, “Optical model for multilayer structures with coherent, partly coherent and incoherent layers,” Opt. Express 21, A262–A267 (2013).
[Crossref]

R. Santbergen and R. J. C. van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[Crossref]

Shang, A.

Shao, B.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

Shen, C.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Smets, A. H. M.

Song, D.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Sougrat, R.

Stevens, E.

Trinh Pham, V.

V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

Um, H.-D.

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010).
[Crossref]

van Zolingen, R. J. C.

R. Santbergen and R. J. C. van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[Crossref]

Wang, B.

B. Wang, E. Stevens, and P. W. Leu, “Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells,” Opt. Express 22, A386–A395 (2014).
[Crossref]

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[Crossref]

Wang, H.

H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
[Crossref]

Wang, L.

H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
[Crossref]

Wu, S.

Xiu, F.

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Xu, Z.

Yakoubi, J.

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Yang, H.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

Yang, Z.

Yip, S.

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Zeman, M.

Zhan, Y.

Zhang, J. C.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

Zhang, R. Y.

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

Zhang, Z.

H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
[Crossref]

Zhao, Y.

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Zhou, K.

K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
[Crossref]

Zrir, M. A.

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Adv. Nat. Sci. (1)

V. Trinh Pham, M. Dutta, H. Bui, and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5, 045014 (2014).

Appl. Opt. (1)

Int. J. Therm. Sci. (1)

H. Wang, X. Liu, L. Wang, and Z. Zhang, “Anisotropic optical properties of silicon nanowire arrays based on the effective medium approximation,” Int. J. Therm. Sci. 65, 62–69 (2013).
[Crossref]

J. Appl. Phys. (1)

R. Y. Zhang, B. Shao, J. R. Dong, J. C. Zhang, and H. Yang, “Absorption enhancement analysis of crystalline Si thin film solar cells based on broadband antireflection nanocone grating,” J. Appl. Phys. 110, 113105 (2011).
[Crossref]

Nanotechnology (2)

B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012).
[Crossref]

K. Zhou, X. Li, S. Liu, and J.-H. Lee, “Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells,” Nanotechnology 25, 415401 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

E. Robak, B. Grzeskiewicz, and M. Kotkowiak, “Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications,” Opt. Mater. 37, 104–109 (2014).
[Crossref]

Phys. Status Solidi A (1)

Z. Duan, M. Li, T. Mwenya, F. Bai, Y. Li, and D. Song, “Geometric parameter optimization to minimize the light-reflection losses of regular vertical silicon nanorod arrays used for solar cells,” Phys. Status Solidi A 211, 2527–2531 (2014).
[Crossref]

Pure Appl. Chem. (1)

F. Xiu, H. Lin, M. Fang, G. Dong, S. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86, 557–573 (2014).
[Crossref]

Sci. Rep. (1)

Y. Li, M. Li, P. Fu, R. Li, D. Song, C. Shen, and Y. Zhao, “A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells,” Sci. Rep. 5, 11532 (2015).
[Crossref]

Sol. Energy (1)

M. Abouda Lachiheb, M. A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, and M. Bouaïcha, “Investigation of the effectiveness of SiNW used as an antireflective layer in solar cells,” Sol. Energy 110, 673–683 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

J.-Y. Jung, H.-D. Um, S.-W. Jee, K.-T. Park, J. H. Bang, and J.-H. Lee, “Optimal design for antireflective Si nanowire solar cells,” Sol. Energy Mater. Sol. Cells 112, 84–90 (2013).
[Crossref]

R. Santbergen and R. J. C. van Zolingen, “The absorption factor of crystalline silicon PV cells: a numerical and experimental study,” Sol. Energy Mater. Sol. Cells 92, 432–444 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Distribution of light absorption ( A NW and A Si are light absorption of antireflection layer and CS, respectively). (b) Structure diagram of NW arrays ( D is the NW diameter, L is the period length, and T is the thickness of CS). (c) Shapes of NW (I, cylindrical, m = 0 ; II, parabolic truncated conical, m = 0.50 ; III, convex conical, m = 1.0 ; IV, conical, m = 2.0 ; V, concave conical, m = 4.0 ).
Fig. 2.
Fig. 2. (a) Schematic multilayer structure, with numbering convention of interfaces ( 1 , , i , , N 1 ), refractive index ( N 1 , , N i , , N N ), and energy fluxes ( Q i , a , Q i , b , Q i + 1 , c , Q i + 1 , d , ). (b) Schematic representation of silicon NW and effective multilayer structure.
Fig. 3.
Fig. 3. (a)–(c) Calculated reflectivity, absorptivity, and transmissivity of the CS substrate covered with NW antireflection coating compared with the naked CS. (The five simulation shapes: I, cylindrical; II, parabolic truncated conical; III, convex conical; IV, conical; V, concave conical, respectively.) Right inset (d)–(f): partially enlarged corresponding to the left.
Fig. 4.
Fig. 4. (a) and (c) Light absorptivity A NW and absorptivity of photon flux (APF) Φ NW of silicon NW coating, respectively. (b) and (d) Light absorptivity A Si and absorptivity of photon flux (APF) Φ Si of CS body compared with the naked silicon under AM, respectively. 1.5 spectrum.
Fig. 5.
Fig. 5. (a)–(e) Contour map of enhancement factor E T under different values of H and D / L , which are corresponding to NW shape of “I,” “II,” “III,” “IV,” and “V” having the circle cross section. (f)–(j) Contour maps of enhancement factor E A under different values of H and D / L , which are corresponding to NW shape of “I,” “II,” “III,” “IV,” and “V” having the circle cross section.
Fig. 6.
Fig. 6. (a)–(e) Contour map of enhancement factor E T under different values of H and D / L , which are corresponding to NW shape of “I,” “II,” “III,” “IV,” and “V” having the square cross section. (f)–(j) Contour map of enhancement factor E A under different values of H and D / L , which are corresponding to NW shape of “I,” “II,” “III,” “IV,” and “V” having the square cross section.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E T = NAP total NAP n Si NAP n Si ,
E A = NAP Si NAP n Si NAP n Si ,
NAP total = A ( λ ) F ( λ ) λ / ( h 0 c 0 ) d λ ,
NAP Si = A Si ( λ ) F ( λ ) λ / ( h 0 c 0 ) d λ ,
NAP n Si = A n Si ( λ ) F ( λ ) λ / ( h 0 c 0 ) d λ .
r = ( L / 2 ) ( z / H ) m / 2 , L = ( 1 / ρ ) 1 / 2 ,
{ Q i , a = τ i Q i , d Q i , b = r i , i + 1 Q i , a + t i + 1 , i Q i + 1 , c Q i + 1 , c = τ i + 1 Q i + 1 , b Q i + 1 , d = t i , i + 1 Q i , a + r i + 1 , i Q i + 1 , c .
τ i = exp ( α d i / cos φ ) ,
f 1 ( N Si 2 N Eff 2 ) ( N Si 2 + 2 N Eff 2 ) + f 2 ( N Air 2 N Eff 2 ) ( N Air 2 + 2 N Eff 2 ) = 0 ,

Metrics