Abstract

Mechanical characterization of optical oxide thin films is performed using nano-indentation, and the results are explained based on the deposition conditions used. These oxide films are generally deposited to have a porous microstructure that optimizes laser induced damage thresholds, but changes in deposition conditions lead to varying degrees of porosity, density, and possibly the microstructure of the thin film. This can directly explain the differences in the mechanical properties of the film studied here and those reported in literature. Of the four single-layer thin films tested, alumina was observed to demonstrate the highest values of nano-indentation hardness and elastic modulus. This is likely a result of the dense microstructure of the thin film arising from the particular deposition conditions used.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
UV optical properties of thin film oxide layers deposited by different processes

Samuel F. Pellicori and Carol L. Martinez
Appl. Opt. 50(28) 5559-5566 (2011)

Optical properties and laser damage threshold of HfO2–SiO2 mixed composite thin films

Shuvendu Jena, Raj Bahadur Tokas, Nitin M. Kamble, Sudhakar Thakur, and Naba Kishore Sahoo
Appl. Opt. 53(5) 850-860 (2014)

Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region

Roland Thielsch, Alexandre Gatto, and Norbert Kaiser
Appl. Opt. 41(16) 3211-3217 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription