Abstract

A thin-flexible and polarization-insensitive multiband terahertz metamaterial absorber (MMA) has been investigated. Each unit cell of the MMA consists of two metallic structures, which include the top metal resonator ring and the bottom metal ground plane, separated by a thin-flexible dielectric spacer. Finite element simulation indicates that this MMA has three high absorption peaks in the terahertz region, with absorptivities of 89% at 0.72 THz, 98% at 1.4 THz, and 85% at 2.3 THz. However, because of its rotationally symmetric structure, this MMA is polarization-insensitive and can perform very well at a wide range of incident angles, namely, 30° for transverse electric waves and 40° for transverse magnetic waves. The thin-flexible device structure and good performance shows that this MMA is very promising to disguise objects and make them less detectable to radar in the terahertz region.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications

Riad Yahiaoui, Jean Paul Guillet, Frédérick de Miollis, and Patrick Mounaix
Opt. Lett. 38(23) 4988-4990 (2013)

Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures

Yuying Lu, Jining Li, Shaohua Zhang, Jinhai Sun, and Jian Quan Yao
Appl. Opt. 57(21) 6269-6275 (2018)

Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription