Abstract

A simple model for laser eye dazzle is presented together with calculations for laser safety applications based on the newly defined Maximum Dazzle Exposure (MDE) and Nominal Ocular Dazzle Distance (NODD). A validated intraocular scatter model has been combined with a contrast threshold target detection model to quantify the impact of laser eye dazzle on human performance. This allows the calculation of the MDE, the threshold laser irradiance below which a target can be detected, and the NODD, the minimum distance for the visual detection of a target in the presence of laser dazzle. The model is suitable for non-expert use to give an estimate of anticipated laser eye dazzle effects in a range of civilian and military scenarios.

Full Article  |  PDF Article
OSA Recommended Articles
Impact of windscreen scatter on laser eye dazzle

Craig A. Williamson, Leon N. McLin, Michael A. Manka, J. Michael Rickman, Paul V. Garcia, and Peter A. Smith
Opt. Express 26(21) 27033-27057 (2018)

Determining hazard distances from non-Gaussian lasers

Wesley J. Marshall
Appl. Opt. 30(6) 696-698 (1991)

Ocular effects of GaAs lasers and near infrared radiation

William T. Ham, Harold A. Mueller, J. J. Ruffolo, R. Kennon Guerry, and A. M. Clarke
Appl. Opt. 23(13) 2181-2186 (1984)

References

  • View by:
  • |
  • |
  • |

  1. European Standard, “Safety of laser products—Part 1: equipment classification and requirements,” (European Committee for Electrotechnical Standardization, 2007).
  2. American National Standards Institute, —“American National Standard for Safe Use of Lasers,” 2014.
  3. Y. Barkana and M. Belkin, “Laser eye injuries,” Surv. Ophthalmol. 44, 459–478 (2000).
  4. R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48, 781–796 (1985).
    [Crossref]
  5. Wicked Lasers, “Arctic Blue Laser,” http://www.wickedlasers.com/ .
  6. Aero News Network, “FAA: laser incidents increase in 2013,” February2014, http://www.aero-news.net/index.cfm?do=main.textpost&id=8f22d466-82d3-47bb-ab52–c2d92975093e .
  7. P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).
  8. G. V. Hultgren and B. Knave, “Discomfort glare and disturbances from light reflections in an office landscape with CRT display terminals,” Appl. Ergon. 5, 2–8 (1974).
  9. J. J. Vos, “Glare today in historical perspective: towards a new CIE glare observer and a new glare nomenclature,” in Proceedings of the 24th Session of the CIE, Warsaw I-1 (CIE, 1999), pp. 38–42.
  10. American National Standards Institute, —“American National Standard for Safe Use of Lasers Outdoors,” 2005.
  11. D. W. Blick, J. M. A. Beer, W. D. Kosnik, S. Troxel, A. Toet, J. Walraven, and W. Mitchell, “Laser glare in the cockpit: psychophysical estimates versus model predictions of veiling luminance distribution,” Appl. Opt. 40, 1715–1726 (2001).
    [Crossref]
  12. H. D. Reidenbach, “Local susceptibility of the retina, formation and duration of afterimages in the case of Class 1 laser products, and disability glare arising from high-brightness light emitting diodes,” J. Laser Appl. 21, 46–56 (2009).
    [Crossref]
  13. D. P. Pinero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).
  14. J. J. Vos and J. Boogaard, “Contribution of cornea to entoptic scatter,” J. Opt. Soc. Am. 53, 869–873 (1963).
    [Crossref]
  15. J. J. Vos, “Contribution of Fundus Oculi to Entoptic Scatter,” J. Opt. Soc. Am. 53, 1449–1451 (1963).
  16. J. J. Vos and M. A. Bouman, “Contribution of retina to entoptic scatter,” J. Opt. Soc. Am. 54, 95–100 (1964).
    [Crossref]
  17. T. J. T. P. van den Berg, J. K. Ijspeert, and P. W. T. Dewaard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).
  18. T. J. T. P. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).
  19. J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.
  20. L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.
  21. L. L. Holladay, “The fundamentals of glare and visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 12, 271–319 (1926).
  22. L. L. Holladay, “Action of a light-source in the field of view in lowering visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 14, 1–15 (1927).
  23. W. S. Stiles, “The scattering theory of the effect of glare on the brightness difference threshold,” in Proceedings of the Royal Society of London Series B—Containing Papers of A Biological Character 105 (Royal Society, 1929), pp. 131–146.
  24. W. S. Stiles and B. H. Crawford, “The effect of a glaring light source on extrafoveal vision,” in Proceedings of the Royal Society of London Series B—Biological Sciences 122 (Royal Society, 1937), pp. 255–280.
  25. J. J. Vos and P. Padmos, “Straylight, contrast sensitivity and the critical object in relation to tunnel entrance lighting,” in Proceedings of the 20th Session of the CIE, Amsterdam I-D404 (CIE, 1983), pp. 1–4.
  26. J. Vos, “Disability glare—a state of the art report,” CIE J. 3, 39–53 (1984).
  27. J. J. Vos and T. J. T. P. van den Berg, “Report on disability glare,” (1999).
  28. J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86, 363–370 (2003).
    [Crossref]
  29. L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).
  30. International Organization for Standardization, “Photometry—the CIE System of Physical Photometry,” , 2005.
  31. J. E. Coppens, L. Franssen, and T. J. T. P. van den Berg, “Wavelength dependence of intraocular straylight,” Exp. Eye Res. 82, 688–692 (2006).
  32. W. Adrian, “Visibility of targets: model for calculation,” Light. Res. Technol. 21, 181–188 (1989).
    [Crossref]
  33. European Standard, “Safety of laser products—Part 1: equipment classification, requirements and user’s guide,” (European Committee for Electrotechnical Standardization, 1994).
  34. G. C. Holst, Electro-Optical Imaging System Performance, 4th ed. (JCD and SPIE, 2006).
  35. World Meteorological Organization, Guide to Meteorological Instruments and Methods of Observation, 7th ed. (World Meteorological Organization, 2008).

2010 (1)

D. P. Pinero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).

2009 (1)

H. D. Reidenbach, “Local susceptibility of the retina, formation and duration of afterimages in the case of Class 1 laser products, and disability glare arising from high-brightness light emitting diodes,” J. Laser Appl. 21, 46–56 (2009).
[Crossref]

2007 (1)

L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).

2006 (1)

J. E. Coppens, L. Franssen, and T. J. T. P. van den Berg, “Wavelength dependence of intraocular straylight,” Exp. Eye Res. 82, 688–692 (2006).

2003 (1)

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86, 363–370 (2003).
[Crossref]

2001 (1)

2000 (1)

Y. Barkana and M. Belkin, “Laser eye injuries,” Surv. Ophthalmol. 44, 459–478 (2000).

1995 (1)

T. J. T. P. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).

1991 (1)

T. J. T. P. van den Berg, J. K. Ijspeert, and P. W. T. Dewaard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).

1989 (1)

W. Adrian, “Visibility of targets: model for calculation,” Light. Res. Technol. 21, 181–188 (1989).
[Crossref]

1985 (1)

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48, 781–796 (1985).
[Crossref]

1984 (2)

P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).

J. Vos, “Disability glare—a state of the art report,” CIE J. 3, 39–53 (1984).

1974 (1)

G. V. Hultgren and B. Knave, “Discomfort glare and disturbances from light reflections in an office landscape with CRT display terminals,” Appl. Ergon. 5, 2–8 (1974).

1964 (1)

1963 (2)

1927 (1)

L. L. Holladay, “Action of a light-source in the field of view in lowering visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 14, 1–15 (1927).

1926 (1)

L. L. Holladay, “The fundamentals of glare and visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 12, 271–319 (1926).

Adrian, W.

W. Adrian, “Visibility of targets: model for calculation,” Light. Res. Technol. 21, 181–188 (1989).
[Crossref]

Alio, J. L.

D. P. Pinero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).

Barkana, Y.

Y. Barkana and M. Belkin, “Laser eye injuries,” Surv. Ophthalmol. 44, 459–478 (2000).

Barnes, L. E.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Beer, J. M. A.

Belkin, M.

Y. Barkana and M. Belkin, “Laser eye injuries,” Surv. Ophthalmol. 44, 459–478 (2000).

Birngruber, R.

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48, 781–796 (1985).
[Crossref]

Blick, D. W.

Bodmann, H.-W.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

Boogaard, J.

Bouman, M. A.

Cole, B.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

Colombo, E.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

Coppens, J. E.

L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).

J. E. Coppens, L. Franssen, and T. J. T. P. van den Berg, “Wavelength dependence of intraocular straylight,” Exp. Eye Res. 82, 688–692 (2006).

Crawford, B. H.

W. S. Stiles and B. H. Crawford, “The effect of a glaring light source on extrafoveal vision,” in Proceedings of the Royal Society of London Series B—Biological Sciences 122 (Royal Society, 1937), pp. 255–280.

Dewaard, P. W. T.

T. J. T. P. van den Berg, J. K. Ijspeert, and P. W. T. Dewaard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).

Dykes, J. R.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Franssen, L.

L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).

J. E. Coppens, L. Franssen, and T. J. T. P. van den Berg, “Wavelength dependence of intraocular straylight,” Exp. Eye Res. 82, 688–692 (2006).

Gabel, V. P.

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48, 781–796 (1985).
[Crossref]

Garcia, P. V.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Hillenkamp, F.

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48, 781–796 (1985).
[Crossref]

Holladay, L. L.

L. L. Holladay, “Action of a light-source in the field of view in lowering visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 14, 1–15 (1927).

L. L. Holladay, “The fundamentals of glare and visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 12, 271–319 (1926).

Holst, G. C.

G. C. Holst, Electro-Optical Imaging System Performance, 4th ed. (JCD and SPIE, 2006).

Hultgren, G. V.

G. V. Hultgren and B. Knave, “Discomfort glare and disturbances from light reflections in an office landscape with CRT display terminals,” Appl. Ergon. 5, 2–8 (1974).

Ijspeert, J. K.

T. J. T. P. van den Berg, J. K. Ijspeert, and P. W. T. Dewaard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).

Knave, B.

G. V. Hultgren and B. Knave, “Discomfort glare and disturbances from light reflections in an office landscape with CRT display terminals,” Appl. Ergon. 5, 2–8 (1974).

Kosnik, W. D.

Kuyk, T.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

McLin, L. N.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Mitchell, W.

Novar, B. J.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Ortiz, D.

D. P. Pinero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).

Padmos, P.

P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).

J. J. Vos and P. Padmos, “Straylight, contrast sensitivity and the critical object in relation to tunnel entrance lighting,” in Proceedings of the 20th Session of the CIE, Amsterdam I-D404 (CIE, 1983), pp. 1–4.

Pinero, D. P.

D. P. Pinero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).

Reidenbach, H. D.

H. D. Reidenbach, “Local susceptibility of the retina, formation and duration of afterimages in the case of Class 1 laser products, and disability glare arising from high-brightness light emitting diodes,” J. Laser Appl. 21, 46–56 (2009).
[Crossref]

Smith, P. A.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Stiles, W. S.

W. S. Stiles, “The scattering theory of the effect of glare on the brightness difference threshold,” in Proceedings of the Royal Society of London Series B—Containing Papers of A Biological Character 105 (Royal Society, 1929), pp. 131–146.

W. S. Stiles and B. H. Crawford, “The effect of a glaring light source on extrafoveal vision,” in Proceedings of the Royal Society of London Series B—Biological Sciences 122 (Royal Society, 1937), pp. 255–280.

Tabernero, J.

L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).

Takeuchi, T.

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

Toet, A.

Troxel, S.

van den Berg, T. J.

L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).

van den Berg, T. J. T. P.

J. E. Coppens, L. Franssen, and T. J. T. P. van den Berg, “Wavelength dependence of intraocular straylight,” Exp. Eye Res. 82, 688–692 (2006).

T. J. T. P. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).

T. J. T. P. van den Berg, J. K. Ijspeert, and P. W. T. Dewaard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

J. J. Vos and T. J. T. P. van den Berg, “Report on disability glare,” (1999).

Vos, J.

J. Vos, “Disability glare—a state of the art report,” CIE J. 3, 39–53 (1984).

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

Vos, J. J.

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86, 363–370 (2003).
[Crossref]

J. J. Vos and M. A. Bouman, “Contribution of retina to entoptic scatter,” J. Opt. Soc. Am. 54, 95–100 (1964).
[Crossref]

J. J. Vos and J. Boogaard, “Contribution of cornea to entoptic scatter,” J. Opt. Soc. Am. 53, 869–873 (1963).
[Crossref]

J. J. Vos, “Contribution of Fundus Oculi to Entoptic Scatter,” J. Opt. Soc. Am. 53, 1449–1451 (1963).

J. J. Vos, “Glare today in historical perspective: towards a new CIE glare observer and a new glare nomenclature,” in Proceedings of the 24th Session of the CIE, Warsaw I-1 (CIE, 1999), pp. 38–42.

J. J. Vos and T. J. T. P. van den Berg, “Report on disability glare,” (1999).

J. J. Vos and P. Padmos, “Straylight, contrast sensitivity and the critical object in relation to tunnel entrance lighting,” in Proceedings of the 20th Session of the CIE, Amsterdam I-D404 (CIE, 1983), pp. 1–4.

Walraven, J.

Williamson, C. A.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

Appl. Ergon. (1)

G. V. Hultgren and B. Knave, “Discomfort glare and disturbances from light reflections in an office landscape with CRT display terminals,” Appl. Ergon. 5, 2–8 (1974).

Appl. Opt. (1)

CIE J. (2)

P. Padmos, “Glare and tunnel entrance lighting: effects of stray-light from eye, atmosphere and windscreen,” CIE J. 3, 1–24 (1984).

J. Vos, “Disability glare—a state of the art report,” CIE J. 3, 39–53 (1984).

Clin. Exp. Optom. (1)

J. J. Vos, “On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation,” Clin. Exp. Optom. 86, 363–370 (2003).
[Crossref]

Exp. Eye Res. (1)

J. E. Coppens, L. Franssen, and T. J. T. P. van den Berg, “Wavelength dependence of intraocular straylight,” Exp. Eye Res. 82, 688–692 (2006).

Health Phys. (1)

R. Birngruber, F. Hillenkamp, and V. P. Gabel, “Theoretical investigations of laser thermal retinal injury,” Health Phys. 48, 781–796 (1985).
[Crossref]

Investig. Ophthalmol. Vis. Sci. (1)

L. Franssen, J. Tabernero, J. E. Coppens, and T. J. van den Berg, “Pupil size and retinal straylight in the normal eye,” Investig. Ophthalmol. Vis. Sci. 48, 2375–2382 (2007).

J. Laser Appl. (1)

H. D. Reidenbach, “Local susceptibility of the retina, formation and duration of afterimages in the case of Class 1 laser products, and disability glare arising from high-brightness light emitting diodes,” J. Laser Appl. 21, 46–56 (2009).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. Rev. Sci. Instrum. (2)

L. L. Holladay, “The fundamentals of glare and visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 12, 271–319 (1926).

L. L. Holladay, “Action of a light-source in the field of view in lowering visibility,” J. Opt. Soc. Am. Rev. Sci. Instrum. 14, 1–15 (1927).

Light. Res. Technol. (1)

W. Adrian, “Visibility of targets: model for calculation,” Light. Res. Technol. 21, 181–188 (1989).
[Crossref]

Optom. Vis. Sci. (2)

D. P. Pinero, D. Ortiz, and J. L. Alio, “Ocular scattering,” Optom. Vis. Sci. 87, E682–E696 (2010).

T. J. T. P. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).

Surv. Ophthalmol. (1)

Y. Barkana and M. Belkin, “Laser eye injuries,” Surv. Ophthalmol. 44, 459–478 (2000).

Vis. Res. (1)

T. J. T. P. van den Berg, J. K. Ijspeert, and P. W. T. Dewaard, “Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall,” Vis. Res. 31, 1361–1367 (1991).

Other (16)

J. Vos, B. Cole, H.-W. Bodmann, E. Colombo, T. Takeuchi, and T. J. T. P. van den Berg, “CIE equations for disability glare,” , 2002.

L. N. McLin, P. A. Smith, L. E. Barnes, J. R. Dykes, T. Kuyk, B. J. Novar, P. V. Garcia, and C. A. Williamson, “Scaling laser disability glare functions with ‘k’ factors to predict dazzle,” presented at ILSC 2013—International Laser Safety Conference, Orlando, USA, 18–21 March 2013.

J. J. Vos, “Glare today in historical perspective: towards a new CIE glare observer and a new glare nomenclature,” in Proceedings of the 24th Session of the CIE, Warsaw I-1 (CIE, 1999), pp. 38–42.

American National Standards Institute, —“American National Standard for Safe Use of Lasers Outdoors,” 2005.

Wicked Lasers, “Arctic Blue Laser,” http://www.wickedlasers.com/ .

Aero News Network, “FAA: laser incidents increase in 2013,” February2014, http://www.aero-news.net/index.cfm?do=main.textpost&id=8f22d466-82d3-47bb-ab52–c2d92975093e .

European Standard, “Safety of laser products—Part 1: equipment classification and requirements,” (European Committee for Electrotechnical Standardization, 2007).

American National Standards Institute, —“American National Standard for Safe Use of Lasers,” 2014.

European Standard, “Safety of laser products—Part 1: equipment classification, requirements and user’s guide,” (European Committee for Electrotechnical Standardization, 1994).

G. C. Holst, Electro-Optical Imaging System Performance, 4th ed. (JCD and SPIE, 2006).

World Meteorological Organization, Guide to Meteorological Instruments and Methods of Observation, 7th ed. (World Meteorological Organization, 2008).

W. S. Stiles, “The scattering theory of the effect of glare on the brightness difference threshold,” in Proceedings of the Royal Society of London Series B—Containing Papers of A Biological Character 105 (Royal Society, 1929), pp. 131–146.

W. S. Stiles and B. H. Crawford, “The effect of a glaring light source on extrafoveal vision,” in Proceedings of the Royal Society of London Series B—Biological Sciences 122 (Royal Society, 1937), pp. 255–280.

J. J. Vos and P. Padmos, “Straylight, contrast sensitivity and the critical object in relation to tunnel entrance lighting,” in Proceedings of the 20th Session of the CIE, Amsterdam I-D404 (CIE, 1983), pp. 1–4.

International Organization for Standardization, “Photometry—the CIE System of Physical Photometry,” , 2005.

J. J. Vos and T. J. T. P. van den Berg, “Report on disability glare,” (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Example eye scatter functions.
Fig. 2.
Fig. 2. Background, L b , and target, L t , luminance levels (a) in the absence of laser dazzle and (b) in the presence of laser dazzle with an equivalent veiling luminance, L v .
Fig. 3.
Fig. 3. A schematic of a laser dazzle scenario with the observer on the left experiencing dazzle from the laser on the right. The target to be detected is represented by the solid ellipse with an angular size of α (deg). At a laser offset angle θ (deg), the target contrast is reduced to the eye’s detection contrast threshold, C thr , for this target for the given ambient luminance and laser-induced veiling luminance. At angles less than θ , the target is obscured from view and so θ represents the extent of obscuration for the target. θ is a half-angle as it applies equally to both sides of the laser axis, meaning the total obscuration spans 2 θ .
Fig. 4.
Fig. 4. Graphs of NODD versus input parameters for the “baseline” case. (a) Ambient luminance, (b) laser power, (c) observer age, and (d) laser wavelength.

Tables (11)

Tables Icon

Table 1. Calibration Factors for the Eye Scatter Equation

Tables Icon

Table 2. Lookup Table for Values of Ω Given L b and α

Tables Icon

Table 3. Lookup Table for Values of AF Given A

Tables Icon

Table 4. Input Parameters for the Example MDE Calculations

Tables Icon

Table 5. Calculated MDE Values (Laser Irradiances) in μW · cm 2 required to Obscure a 1 Degree Target of 0.8 Contrast from a 40 Year Old with Brown Eyes

Tables Icon

Table 6. Typical Atmospheric Parameters

Tables Icon

Table 7. Additional Parameters for the Example NODD Calculations

Tables Icon

Table 8. Calculated NODD Values (km) for the Obscuration of a 1 Degree Target of 0.8 Contrast from a 40 Year Old with Brown Eyes, for Laser Power of 100 mW and a Divergence of 2 mrad, in an Atmosphere with 15 km Visibility

Tables Icon

Table 9. Calculated Angular Obscuration Extent (deg) for viewing at 0.1 km Range a 1 Degree Target of 0.8 Contrast by a 40 Year Old with Brown Eyes, for Laser Power of 100 mW and a Divergence of 2 mrad, in an Atmosphere with 15 km Visibility

Tables Icon

Table 10. The “Less Dazzle,” “Baseline,” and “More Dazzle” Input Parameters used in the Sensitivity Analysis

Tables Icon

Table 11. Calculated NODD Spreads for the Sensitivity Analysis

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

g eye ( θ , A , p ) = 10 θ 3 + [ 5 θ 2 + 0.1 p θ ] [ 1 + ( A 62.5 ) 4 ] + 0.0025 p ,
f eye ( θ , A , p , L b ) = S 1 L b T 1 g eye ( θ , A , p ) ,
f eye = L v E l .
E l = 683 V λ U ,
L v = f eye 683 V λ U .
C orig = L t L b L b .
C v = ( L t + L v ) ( L b + L v ) L b + L v = L t L b L b + L v = L b C orig L b + L v .
C thr ( L b , α , A ) = Ω AF ,
Ω ( L b , α ) = 2.6 ( ϕ ( L b ) 60 α + L ( L b ) ) 2 L b ;
for 23 < A < 64 , AF ( A ) = ( A 19 ) 2 2160 + 0.99 ;
for 64 < A < 75 , AF ( A ) = ( A 56.6 ) 2 116.3 + 1.43 ,
for L b 0.6 cd m 2 ϕ = log ( 4.1925 L b 0.1556 ) + 0.1684 L b 0.5867 ,
L = 0.05946 L b 0.466 ;
for 0.00418 < L b < 0.6 ϕ = 10 0.072 + 0.3372 log L b + 0.0866 ( log L b ) 2 ,
L = 10 1.256 + 0.319 log L b ;
for L b 0.00418 ϕ = 10 0.028 + 0.173 log L b ,
L = 10 0.891 + 0.5275 log L b + 0.0227 ( log L b ) 2 .
C v = C thr , L b C orig L b + L v = Ω AF , L v = L b C orig Ω AF L b .
f eye 683 V λ U = L b C orig Ω AF L b , MDE = U threshold = ( L b C orig Ω AF L b ) f eye 683 V λ .
U ( R ) = total power beam area = P π ( R · d / 2 ) 2 ,
R NODD = 4 P π d 2 MDE .
R NODD β = 0.5 · R NODD · ( 1 + e β · R NODD ) ,
β = 3 V ,
f eye ( θ ) 683 V λ U = L b C orig Ω AF L b , f eye ( θ ) = ( L b C orig Ω A F L b ) 683 V λ U .

Metrics