Abstract

In this paper, a multimodal interferometer based on the liquid-filled photonic crystal fiber (PCF) has been proposed and experimentally demonstrated for simultaneous measurement of temperature and force. Experimental results show that different spectral minima have distinctive sensitivities to the temperature and force. The proposed interferometer shows the temperature sensitivities of 9.214nm/°C, 24.757nm/°C, and 12.543/°C and the force sensitivities of 0nm/N, 4.978nm/N, and 0nm/N, respectively, for the three selected spectral minima. The sensing matrices are thus established and simultaneous measurement of temperature and force has been experimentally demonstrated. The proposed liquid-filled PCF-based multimodal interferometer would find potential applications in multiple-parameter sensing owing to its high sensitivity, compactness, ease of fabrication, and low cost.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement

Chupao Lin, Ying Wang, Yijian Huang, Changrui Liao, Zhiyong Bai, Maoxiang Hou, Zhengyong Li, and Yiping Wang
Photon. Res. 5(2) 129-133 (2017)

Fiber in-line Mach–Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing

Hu Liang, Weigang Zhang, Huayu Wang, Pengcheng Geng, Shanshan Zhang, Shecheng Gao, Chunxue Yang, and Jieliang Li
Opt. Lett. 38(20) 4019-4022 (2013)

All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber

Jia-hong Liou and Chin-ping Yu
Opt. Express 23(5) 6946-6951 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription