Abstract

Simultaneous visible and long-wave infrared (IR) images of the Moon were used with a simple energy-balance model to study the spatial pattern of lunar surface temperatures. The thermal images were obtained with a radiometrically calibrated, compact, low-cost, commercial IR camera mounted on a small telescope. Differences between the predicted and measured maximum Moon temperatures were used to determine the infrared optical depth (OD), which represents the path-integrated extinction of an elevated layer of wildfire smoke in the atmosphere. The OD values retrieved from the IR Moon images were combined with simultaneous OD measurements from a ground-based, zenith-pointing lidar operating at a wavelength of 532 nm to determine an IR-to-visible OD ratio of 0.50±0.18 for moderately aged wildfire smoke aerosol.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Observations of the moon by the global ozone monitoring experiment: radiometric calibration and lunar albedo

Marcel R. Dobber, Albert P. H. Goede, and John P. Burrows
Appl. Opt. 37(33) 7832-7841 (1998)

Passive remote smoke plume opacity sensing: a technique

P. Lilienfeld, G. Woker, R. Stern, and L. McVay
Appl. Opt. 20(5) 800-806 (1981)

Visible and invisible mirages: comparing inferior mirages in the visible and thermal infrared

Michael Vollmer, Joseph A. Shaw, and Paul W. Nugent
Appl. Opt. 54(4) B76-B84 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics